4.6 Article

Potentiometric MRI of a Superconcentrated Lithium Electrolyte: Testing the Irreversible Thermodynamics Approach

期刊

ACS ENERGY LETTERS
卷 6, 期 9, 页码 3086-3095

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.1c01213

关键词

-

资金

  1. Faraday Institution Multiscale Modelling and Degradation Projects under EPSRC [FIRG003, FIRG001, EP/S003053/1]
  2. Henry Royce Institute (UK Engineering and Physical Science Research Council) [EP/R010145/1]
  3. The Faraday Institution [EP/S003053/1]
  4. European Research Council [EC H2020 ERC] [835073]
  5. EPSRC [EP/R010145/1] Funding Source: UKRI
  6. European Research Council (ERC) [835073] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Superconcentrated electrolytes provide a rigorous testing ground for continuum transport theories. Experimental results using LiPF6:EMC show consistent ion distributions and overpotentials as predicted by the theoretical model. The study reveals strong cation-anion interactions and extreme solute-volume effects in electrolytic transport phenomena.
Superconcentrated electrolytes, being highly thermodynamically nonideal, provide a stringent proving ground for continuum transport theories. Herein, we test an ostensibly complete model of LiPF6 in ethyl-methyl carbonate (EMC) based on the Onsager-Stefan-Maxwell theory from irreversible thermodynamics. We perform synchronous magnetic resonance imaging (MRI) and chronopotentiometry to examine how superconcentrated LiPF6:EMC responds to galvanostatic polarization and open-circuit relaxation. We simulate this experiment using an independently parametrized model with six composition-dependent electrolyte properties, quantified up to saturation. Spectroscopy reveals increasing ion association and solvent coordination with salt concentration. The potentiometric MRI data agree closely with the predicted ion distributions and overpotentials, providing a completely independent validation of the theory. Superconcentrated electrolytes exhibit strong cation-anion interactions and extreme solute-volume effects that mimic elevated lithium transference. Our simulations allow surface overpotentials to be extracted from cell-voltage data to track lithium interfaces. Potentiometric MRI is a powerful tool to illuminate electrolytic transport phenomena.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据