4.7 Article

Impact of metal/ceramic interactions on interfacial shear strength: Study of Cr/TiN using a new modified embedded-atom potential

期刊

MATERIALS & DESIGN
卷 210, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2021.110120

关键词

MEAM; Cr; TiN metal-ceramic interface; Molecular dynamics; Shear strength; Misfit dislocations

资金

  1. United States National Science Foundation [OIA-1541079]

向作者/读者索取更多资源

The effect of misfit dislocation networks (MDNs) on the stability and shear strength of Cr/TiN was investigated. The study found that the interfacial energy was lowest when MDN was located in the Cr layer adjacent to the chemical interface, resulting in the largest dislocation core widths and shear failure in the ceramic.
The effect of misfit dislocation networks (MDNs) on the stability and shear strength of Cr/TiN was investigated using a newly developed modified embedded atom model parameterized to pure Cr, CrTi, CrN, and Cr/TiN interfacial properties. The interfacial energy was lowest when the MDN was located in the Cr layer adjacent to the chemical interface, which also had the largest dislocation core widths. This was consistent with generalized stacking fault energies, which had lower energy barriers between the first and second Cr layers next to the chemical interface. As the MDN moved away from the interface, dislocation core widths consistently decreased along with the interfacial energy. For all positions of MDNs, shear failure occurred in the ceramic, between the first and second TiN layers next to the chemical interface. The lowest shear strength was found for the system with the MDN in the first Cr layer with respect to the chemical interface. Only for this particular configuration was there a significant plastic deformation present. (c) 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据