4.7 Article

The creep behaviour of nickel alloy 718 manufactured by laser powder bed fusion

期刊

MATERIALS & DESIGN
卷 204, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2021.109647

关键词

Laser powder bed fusion; Nickel alloy 718; Creep; Fractography

资金

  1. Engineering and Physical Sciences Research Council [EP/S513854/1]

向作者/读者索取更多资源

The performance of components manufactured by laser powder bed fusion (LPBF) is limited by microstructural defects and macroscale anomalies, resulting in lower mechanical properties compared to wrought counterparts. Research on creep behavior of LPBF alloy 718 showed that different scanning strategies and build orientations, along with heat treatment, significantly impacted creep life. LPBF has the potential to surpass wrought material properties, with build strategies proposed for high temperature creep applications.
Components manufactured by laser powder bed fusion (LPBF) are limited by their performance for use in critical applications. LPBF materials have microstructural defects, such as suboptimal grain size and morphology, and macroscale anomalies, such as lack of fusion. This results in LPBF components performing below their wrought counterparts for various mechanical properties, such as creep which has seldom been researched. To understand the creep behaviour of LPBF alloy 718, parts were fabricated using different scanning strategies and build orientations and creep tested at 650 degrees C under a 600 MPa load. Heat treatment increased the creep life by a factor of 5, confirming its necessity. The build orientation and stress state were shown to be determining factors in the creep failure mechanisms. The Meander scanning strategy resulted in a 58% increase in creep life compared to the Stripe strategy, due to the detrimental effects of the numerous laser overlapping regions in the Stripe strategy. For a given strategy, a 24% increase in creep life compared to wrought alloy 718 was observed, indicating that LPBF has the potential to surpass wrought material properties. As a result of this work, it is possible to propose build strategies for high temperature creep applications. (C) 2021 The Author(s). Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据