4.6 Article

A magnetotelluric investigation of the Scandinavian Caledonides in western Jamtland, Sweden, using the COSC borehole logs as prior information

期刊

GEOPHYSICAL JOURNAL INTERNATIONAL
卷 208, 期 3, 页码 1465-1489

出版社

OXFORD UNIV PRESS
DOI: 10.1093/gji/ggw457

关键词

Inverse theory; Downhole methods; Magnetotellurics; Continental tectonics: compressional; Europe

资金

  1. International Continental Scientific Drilling Program (ICDP)
  2. Swedish Research Council
  3. Swedish Scientific Drilling Program (SSDP)
  4. Swedish interests in continental and ocean scientific drilling
  5. Swedish Research Council [2013-5780]
  6. Geological Survey of Sweden
  7. China Scholarship Council [201206170026]

向作者/读者索取更多资源

In connection with the Collisional Orogeny in the Scandinavian Caledonides (COSC) project, broad-band magnetotelluric (MT) data were acquired at 78 stations along a recent ca. 55km- long NW-SE directed reflection seismic profile (referred to as the COSC Seismic Profile; CSP), with the eastern end located similar to 30 km to the west of the orogenic Caledonian front. The MT component of the project aims at (i) delineating the highly conductive (similar to 0.1 Omega . m) alum shales that are associated with an underlying main decollement and (ii) calibrating the MT model to borehole logs. Strike and distortion analyses of the MT data show a 3-D structure in the western 10 km of the profile around the 2.5 km deep COSC-1 borehole (IGSN: ICDP5054EHW1001) and a preferred strike angle of N34 degrees E in the central and eastern parts of the profile. 2-D modelling of MT impedances was tested using different inversion schemes and parameters. To adjust the resistivity structure locally around the borehole, resistivity logging data from COSC-1 were successfully employed as prior constraints in the 2-D MT inversions. Compared with the CSP, the model inverted from the determinant impedances shows the highest level of structural similarity. A shallow resistor (> 1000 Omega . m) in the top 2-3 km depth underneath the western most 10 km of the profile around COSC-1 corresponds to a zone of high seismic reflectivity, and a boundary at less than 1 km depth where the resistivity decreases rapidly from > 100 to < 1 Omega . m in the central and eastern parts of the profile coincides with the first seismic reflections. The depth to this boundary is well constrained as shown by 1-D inversions of the MT data from five selected sites and it decreases towards the Caledonian front in the east. Underneath the easternmost part of the profile, the MT data show evidence of a second deeper conductor (resistivity < 1 Omega . m) at > 3 km depth. Based upon the COSC-1 borehole logs, the CSP reflection seismic image, and the surface geologic map, the MT resistivity models were interpreted geologically. In the vicinity of COSC-1, the resistor down to 2-3 km depth pertains to the metamorphic Middle Allochthon. The up to 1000-m-thick shallow resistor in the central and eastern parts of the profile is interpreted to overly an imbricated unit at the bottom of the Lower Allochthon that includes the alum shales. In the MT resistivity model, the 300-500 m thick imbricated unit masks the main Caledonian decollement at its bottom. A second possible interpretation, though not favoured here, is that the decollement occurs along a much deeper seismic reflection shallowing from 4.5 km depth in the west to similar to 600 m depth in the east. An additional borehole (COSC-2) is planned to penetrate the Lower Allochthon and the main decollement surface in the central part of the profile and can provide information to overcome this interpretational ambiguity. Using a synthetic study, we evaluate how resistivity logs from COSC-2 can improve the 2-D inversion model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据