4.6 Article

Purification, Characterization, and Assessment of Antimicrobial Activity and Toxicity of Portulaca elatior Leaf Lectin (PeLL)

期刊

PROBIOTICS AND ANTIMICROBIAL PROTEINS
卷 15, 期 2, 页码 287-299

出版社

SPRINGER
DOI: 10.1007/s12602-021-09837-w

关键词

Antibacterial activity; Antifungal activity; Phytopathogens; Candida; Pectobacterium; Lectin characterization

向作者/读者索取更多资源

This study describes the purification of a new low-toxic and thermostable lectin from Portulaca elatior, a plant species found in the Brazilian Caatinga region. The lectin showed antimicrobial activity, specifically against Pectobacterium strains, and no hemolytic activity or acute toxicity in mice.
Lectins are carbohydrate-binding proteins with several bioactivities, including antimicrobial properties. Portulaca elatior is a species found at Brazilian Caatinga and data on the biochemical composition of this plant are scarce. The present work describes the purification of P. elatior leaf lectin (PeLL) as well as the assessment of its antimicrobial activity and toxicity. PeLL, isolated by chromatography on a chitin column, had native liquid charge and subunit composition evaluated by electrophoresis. Hemagglutinating activity (HA) of PeLL was determined in the presence of carbohydrates or divalent cations, as well as after heating and incubation at different pH values. Changes in the lectin conformation were monitored by evaluating intrinsic tryptophan fluorescence and using the extrinsic probe bis-ANS. Antimicrobial activity was evaluated against Pectobacterium strains and Candida species. The minimal inhibitory (MIC), bactericidal (MBC), and fungicidal (MFC) concentrations were determined. Finally, PeLL was evaluated for in vitro hemolytic activity in human erythrocytes and in vivo acute toxicity in mice (5 and 10 mg/kg b.w. per os). PeLL (pI 5.4; 20 kDa) had its HA was inhibited by mannose, galactose, Ca2+, Mg2+, and Mn2+. PeLL HA was resistant to heating at 100 degrees C, although conformational changes were detected. PeLL was more active in the acidic pH range, in which no conformational changes were observed. The lectin presented MIC and MBC of 0.185 and 0.74 mu g/mL for all Pectobacterium strains, respectively; MIC of 1.48 mu g/mL for C. albicans, C. tropicalis, and C. krusei; MIC and MFC of 0.74 and 2.96 mu g/mL for C. parapsilosis. No hemolytic activity or signs of acute toxicity were observed in the mice. In conclusion, a new, low-toxic, and thermostable lectin was isolated from P. elatior leaves, being the first plant compound to show antibacterial activity against Pectobacterium.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据