4.7 Article

Very large group delay in VHF band using coupled high temperature superconducting resonators

期刊

PHOTONICS RESEARCH
卷 9, 期 10, 页码 1892-1897

出版社

CHINESE LASER PRESS
DOI: 10.1364/PRJ.430185

关键词

-

类别

资金

  1. National Natural Science Foundation of China [61371009]

向作者/读者索取更多资源

Researchers proposed and experimentally demonstrated electromagnetic induced transparency (EIT) in a high-temperature superconducting microwave circuit. This method enables slow light effect in the VHF band and shows great potential for future radio-frequency memory applications.
Storing a very high frequency (VHF) band (30-300 MHz) electromagnetic wave has many potential applications, such as phase modulation, buffering, and radio frequency memory. It can be effectively achieved by applying coupled resonator-based electromagnetically induced transparency (EIT) due to its slow light effect. However, the wavelength in the VHF band is too long to design resonators, and the group delay is limited by the high resistive loss of metal. The practical application of EIT in the VHF band is still a big challenge. In this work, we propose and experimentally demonstrate EIT response in a high-temperature superconducting (HTS) microwave circuit with coupled-resonator-induced transparency. The chip size of the HTS circuit is only 34 mm x 20 mm with a very low transparency frequency of 198.55 MHz. In addition, we implement very large group delay higher than 12.3 mu s and 16.2 mu s with working temperatures of 65 K and 50 K separately, which is much longer than the previous reported works on slow wave. The fabricated circuit is planar with working temperature about 65 K, and thus can be easily integrated into other microwave devices under the cryogenic conditions provided by a commercial portable Stirling cryocooler. Our proposed method paves a way for studying EIT in the microwave region due to the high quality factor of the HTS resonator, which has great potential use for radio-frequency memory in the future. (C) 2021 Chinese Laser Press

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据