4.5 Article

Polypyrrole@polyaniline-reduced graphene oxide nanocomposite support material and Cobalt for the enhanced electrocatalytic activity of nickel phosphide microsphere towards alkaline urea oxidation

期刊

MATERIALS RESEARCH EXPRESS
卷 8, 期 9, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/2053-1591/ac2287

关键词

current density; electrocatalyst; nickel phosphide; onset potential; urea oxidation; kinetics

资金

  1. Ministry of Science and Higher Education, Ethiopia
  2. IoE grant [R(VI)090/23/2019-20 356]

向作者/读者索取更多资源

The study focused on modifying conventional nickel phosphide by cobalt doping and dispersing the prepared cobalt nickel phosphide on poly (aniline-co-pyrrole)/reduced graphene oxide to improve the kinetics and stability of direct urea fuel cells. The synthesized catalysts showed superior electrocatalytic performance, indicating potential commercial applications.
Efficient and low-cost materials are highly demanded to improve the sluggish kinetics and stability of direct urea fuel cells for large-scale commercialization. In this study, modification of conventional nickel phoaphide (NiP) by cobalt doping via the facile solvothermal method and simultaneously dispersing prepared cobalt nickel phosphide (CoNiP) on poly (aniline-co-pyrrole)/reduced graphene oxide (PPy@PANI/rGO) as efficient and low-cost support material via simple ultrasonic/heat mediated dispersion process. The synthesized catalysts were characterized by scanning electron microscopy and an x-ray diffractometer. Furthermore, Cyclic Voltammetry tests were conducted to evaluate the performance of synthesized catalysis towards alkaline urea oxidation. The physical characterization depicts the successful formation of NiP and Co-doped NiP microsphere with a particle size of 4.306 mu m and 2.04 mu m, respectively. In addition, homogeneous distribution of the CoNiP microsphere in the structure of PPy@PANI/rGO support material was achieved. Based on the CV test, the superior electrocatalytic performance of CoNiP@PPy@PANI/rGO electrode material with a potential of 0.414V versus SCE to drive a high current density of 26.92 mAcm(-2), lower onset potential of 0.204 V versus SCE, and higher electrochemically active surface area of 2.08 x 10(-1) cm(2)mg(-1) were achieved. Furthermore, the electrochemical activities, kinetics, and stability of CoNiP@PPy@PANI/rGO remarkably outperformed the commercial NiP and CoNiP towards alkaline urea electro-oxidation. Therefore, a novel material, CoNiP@PPy@PANI/rGO, is an excellent candidate for anode electrode material in direct urea fuel cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据