4.4 Article

In situ and ex situ bioassays with Cantareus aspersus for environmental risk assessment of metal(loid) and PAH-contaminated soils

期刊

出版社

WILEY
DOI: 10.1002/ieam.4480

关键词

Biomonitoring; Bioaccumulation; Land snail; Metals; Polycyclic aromatic hydrocarbons

资金

  1. ADEME [1572C0310]
  2. Pays de Montbeliard Agglomeration

向作者/读者索取更多资源

This study compared the results provided by in situ and ex situ bioassays for assessing the environmental risk of contaminated soils using land snails. The in situ bioassay was found to be more reflective of environmental parameters affecting bioavailability, while ex situ bioassay generally yielded higher risk coefficients. Both approaches were complementary in evaluating the environmental risk of contaminated soils.
Environmental risk assessment of contaminated soils requires bioindicators that allow the assessment of bioavailability and toxicity of chemicals. Although many bioassays can determine the ecotoxicity of soil samples in the laboratory, few are available and standardized for on-site application. Bioassays based on specific threshold values that assess the in situ and ex situ bioavailability and risk of metal(loid)s and polycyclic aromatic hydrocarbons (PAHs) in soils to the land snail Cantareus aspersus have never been simultaneously applied to the same soils. The aims of this study were to compare the results provided by in situ and ex situ bioassays and to determine their respective importance for environmental risk assessment. The feasibility and reproducibility of the in situ bioassay were assessed using an international ring test. This study used five plots located at a former industrial site and six laboratories participated in the ring test. The results revealed the impact of environmental parameters on the bioavailability of metal(loid)s and PAHs to snails exposed in the field to structured soils and vegetation compared to those exposed under laboratory conditions to soil collected from the same field site (excavated soils). The risk coefficients were generally higher ex situ than in situ, with some exceptions (mainly due to Cd and Mo), which might be explained by the in situ contribution of plants and humus layer as sources of exposure of snails to contaminants and by climatic parameters. The ring test showed good agreement among laboratories, which determined the same levels of risk in most of the plots. Comparison of the bioavailability to land snails and the subsequent risk estimated in situ or ex situ highlighted the complementarity between both approaches in the environmental risk assessment of contaminated soils, namely, to guide decisions on the fate and future use of the sites (e.g., excavation, embankments, and land restoration). Integr Environ Assess Manag 2021;00:1-16. (c) 2021 SETAC

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据