4.6 Article

Gene and Phenotype Expansion of Unexplained Early Infantile Epileptic Encephalopathy

期刊

FRONTIERS IN NEUROLOGY
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fneur.2021.633637

关键词

encephalopathy; epilepsy; infantile; gene; phenotype

资金

  1. Six Talent Peaks Project of China [2014-WSN-062]

向作者/读者索取更多资源

NGS has revealed genetic causes of epileptic encephalopathy in Chinese children, with pathogenic variants identified in 34% of the cohort. The phenotypes of genes with pathogenic variants were diverse, and early diagnosis through NGS may lead to precise therapeutic interventions and potentially improve developmental outcomes.
Objective: The genetic aetiology of epileptic encephalopathy (EE) is growing rapidly based on next generation sequencing (NGS) results. In this single-centre study, we aimed to investigate a cohort of Chinese children with early infantile epileptic encephalopathy (EIEE). Methods: NGS was performed on 50 children with unexplained EIEE. The clinical profiles of children with pathogenic variants were characterised and analysed in detail. Conservation analysis and homology modelling were performed to predict the impact of STXBP1 variant on the protein structure. Results: Pathogenic variants were identified in 17 (34%) of 50 children. Sixteen variants including STXBP1 (n = 2), CDKL5 (n = 2), PAFAH1B1, SCN1A (n = 9), SCN2A, and KCNQ2 were de novo, and one (PIGN) was a compound heterozygous variant. The phenotypes of the identified genes were broadened. PIGN phenotypic spectrum may include EIEE. The STXBP1 variants were predicted to affect protein stability. Significance: NGS is a useful diagnostic tool for EIEE and contributes to expanding the EIEE-associated genotypes. Early diagnosis may lead to precise therapeutic interventions and can improve the developmental outcome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据