4.7 Article

Silicone Nanofilament Support Layers in an Open-Channel System for the Fast Reduction of Para-Nitrophenol

期刊

NANOMATERIALS
卷 11, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/nano11071663

关键词

nanomaterials; open channel; catalysis

向作者/读者索取更多资源

Chemical vapor phase deposition was used to create hydrophobic nanostructured surfaces on glass slides, with subsequent creation of hydrophilic channels by sputtering a metal catalyst on them. The resulting open-channel system showed superior catalytic performance compared to nanostructure-free reference systems, with the created nanostructures proving stable under reaction conditions and exhibiting improved catalysis compared to flat reference systems.
Chemical vapor phase deposition was used to create hydrophobic nanostructured surfaces on glass slides. Subsequently, hydrophilic channels were created by sputtering a metal catalyst on the channels while masking the outside. The surface tension gradient between the hydrophilic surface in the channels and the outside hydrophobicity formed the open-channel system. The reduction of para-nitrophenol (PNP) was studied on these devices. When compared to nanostructure-free reference systems, the created nanostructures, namely, silicone nanofilaments (SNFs) and nano-bagels, had superior catalytic performance (73% and 66% conversion to 55% at 0.5 mu L/s flow rate using 20 nm platinum) and wall integrity; therefore, they could be readily used multiple times. The created nanostructures were stable under the reaction conditions, as observed with scanning electron microscopy. Transition electron microscopy studies of platinum-modified SNFs revealed that the catalyst is present as nanoparticles ranging up to 13 nm in size. By changing the target in the sputter coating unit, molybdenum, gold, nickel and copper were evaluated for their catalytic efficiency. The relative order was platinum < gold = molybdenum < nickel < copper. The decomposition of sodium borohydride (NaBH4) by platinum as a concurrent reaction to the para-nitrophenol reduction terminates the reaction before completion, despite a large excess of reducing agent. Gold had the same catalytic rate as molybdenum, while nickel was two times and copper about four times faster than gold. In all cases, there was a clear improvement in catalysis of silicone nanofilaments compared to a flat reference system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据