4.7 Article

Biosynthesis of Silver Nanoparticles and Their Applications in Harvesting Sunlight for Solar Thermal Generation

期刊

NANOMATERIALS
卷 11, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/nano11092421

关键词

silver nanofluid; green synthesis method; surface plasmon resonance effect; photothermic energy; parsley

向作者/读者索取更多资源

By utilizing parsley leaf extract, silver nanoparticles were synthesized in an eco-friendly and cost-effective manner, and thoroughly characterized using various techniques. These biosynthesized silver nanoparticles were then used to convert solar energy into heat, significantly increasing the temperature of the aqueous medium.
Silver (Ag) nanoparticles (NPs) have been synthesized through an easy, inexpensive, and ecofriendly method. Petroselinum crispum, parsley, leaf extract was utilized as a reducing, capping, and stabilizing agent, without using any hazardous chemical materials, for producing Ag NPs. The biosynthesized Ag NPs were characterized using different characterization techniques, namely UV-Vis, FT-IR spectroscopy, X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), dynamic light scattering (DLS), zeta potential, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), transmission electron microscope (TEM), field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray (EDX) analysis to investigate the optical, thermal, structural, morphological, and chemical properties of the plant extract and the biosynthesized Ag NPs. After that, the biosynthesized Ag NPs were utilized in harvesting sunlight for solar thermal generation. Surface plasmon resonance (SPR) for the green synthesized Ag NPs with the dark color were adjusted at nearly 450 nm. Once the Ag NPs are excited at the SPR, a large amount of heat is released, which causes a change in the local refractive index surrounding the Ag NPs. The released heat from the Ag NPs under the solar irradiation at the precise wavelength of plasmon resonance significantly increased the temperature of the aqueous medium. Different percentages of Ag NPs were dispersed in water and then exposed to the sunlight to monitor the temperature of the suspension. It was found that the temperature of the aqueous medium reached its highest point when 0.3 wt. % of Ag NPs was utilized. This investigation is rare and unique, and it shows that utilizing a small amount of the biosynthesized Ag NPs can increase the temperature of the aqueous medium remarkably.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据