4.4 Article

In Vitro Multiparametric Cellular Analysis by Micro Organic Charge-modulated Field-effect Transistor Arrays

期刊

出版社

JOURNAL OF VISUALIZED EXPERIMENTS
DOI: 10.3791/62907

关键词

-

资金

  1. European Union's Horizon 2020 research and innovation programme [882897]
  2. PON project TEX-STYLE [ARS01_00996]

向作者/读者索取更多资源

Modern electrophysiology has advanced due to the development of sophisticated tools and materials, with the emergence of organic bioelectronics offering new advancements in cellular interfacing.
Modern electrophysiology has been constantly fueled by the parallel development of increasingly sophisticated tools and materials. In turn, discoveries in this field have driven technological progress in a back-and-forth process that ultimately determined the impressive achievements of the past 50 years. However, the most employed devices used for cellular interfacing (namely, the microelectrode arrays and microelectronic devices based on transistors) still present several limitations such as high cost, the rigidity of the materials, and the presence of an external reference electrode. To partially overcome these issues, there have been developments in a new scientific field called organic bioelectronics, resulting in advantages such as lower cost, more convenient materials, and innovative fabrication techniques. Several interesting new organic devices have been proposed during the past decade to conveniently interface with cell cultures. This paper presents the protocol for the fabrication of devices for cellular interfacing based on the organic charge modulated field-effect transistor (OCMFET). These devices, called micro OCMFET arrays (MOAs), combine the advantages of organic electronics and the peculiar features of the OCMFET to prepare transparent, flexible, and reference-less tools with which it is possible to monitor both the electrical and the metabolic activities of cardiomyocytes and neurons in vitro, thus allowing a multiparametric evaluation of electrogenic cell models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据