4.6 Review

Horizontal MicroRNA Transfer by Platelets - Evidence and Implications

期刊

FRONTIERS IN PHYSIOLOGY
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2021.678362

关键词

microRNA; platelets; microvesicles; cellular communication; horizonal transfer

资金

  1. NIH [R01DK122813]
  2. Medical Scientific Fund of the Mayor of the City of Vienna [P-19098]
  3. FWF [P-32064]

向作者/读者索取更多资源

Platelets play a central role in hemostasis and inter-cellular communication by releasing functional microRNA complexes that can be internalized by macrophages, endothelial cells, and smooth muscle cells. Furthermore, platelets can infiltrate into tissues with limited cellular access such as solid tumors, modulating tumor progression through microRNA transfer.
For decades, platelets have been known for their central role in hemostasis and their ability to release bioactive molecules, allowing inter-platelet communication and crosstalk with the immune system and vascular cells. However, with the detection of microRNAs in platelets and platelet-derived microvesicles (MVs), a new level of inter-cellular regulation was revealed. By shedding MVs from their plasma membrane, platelets are able to release functional microRNA complexes that are protected from plasma RNases. Upon contact with macrophages, endothelial cells and smooth muscle cells platelet microRNAs are rapidly internalized and fine-tune the functionality of the recipient cell by post-transcriptional reprogramming. Moreover, microRNA transfer by platelet MVs allows infiltration into tissues with limited cellular access such as solid tumors, thereby they not only modulate tumor progression but also provide a potential route for drug delivery. Understanding the precise mechanisms of horizontal transfer of platelet microRNAs under physiological and pathological conditions allows to design side-specific therapeutic (micro)RNA delivery systems. This review summarizes the current knowledge and the scientific evidence of horizontal microRNA transfer by platelets and platelet-derived MVs into vascular and non-vascular cells and its physiological consequences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据