4.7 Article

Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 188, 期 -, 页码 407-423

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2016.05.009

关键词

Humic acid; Pb; Cu; Zn; Ca; Metal-oxide surfaces; Single crystal; X-ray standing wave; LP-XSW-FY; Metal partitioning; Hematite; Alumina; pH effect

资金

  1. U.S. National Science Foundation [CHE-0431425]
  2. U.S. National Science Foundation-Center for Environmental Implications for Nanotechnology (based at Duke University) (U.S. National Science Foundation) [EF-0830093]
  3. U.S. National Science Foundation - Earth Sciences [EAR-1128799]
  4. U.S. Department of Energy - Geosciences [DE-FG02-94ER14466]
  5. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
  6. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (similar to 0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: alpha-Al2O3 (00 01), alpha-Al2O3 (1-102), and alpha-Fe2O3 (0001). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive alpha-Al2O3 (1-102) and alpha-Fe2O3 (0001) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the alpha-Fe2O3 (0001) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the alpha-Al2O3 (1-102) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated alpha-Al2O3 (1-102) surfaces in samples without the addition of calcium. However, the amounts of Pb(II) mobilized from the ESHA coatings onto the alpha-Al2O3 (1-102) surfaces increased from 40% (no added Ca) to 58% (with 2 mM Ca) after 72 h of reaction time, possibly due to displacement of Pb(II) by Ca(II) from binding sites in the ESHA coatings. In contrast, Pb(II), Cu(II), and Zn(II) present in the ESHA coatings were found to be unreactive with the alpha-Al2O3 (0001) surface. The observed reactivities of the three ESHA-coated metal-oxide surfaces with respect to metal-ion sorption are consistent with the trend observed for the uncoated metal-oxide surfaces: alpha-Fe2O3 (0001) > alpha-Al2O3 (1-102) > alpha-Al2O3 (0001). In addition, Pb(II) partitioning onto alpha-Al2O3 (1-102) surfaces increased with increasing pH from 4.0 to 9.0 as a result of the increasingly negative surface charge. These results show that intrinsic properties (nature of binding sites, binding affinities, and surface charge) of the ESHA coatings and metal-oxide surfaces, as well as external parameters such as pH and competing ions, are key factors governing the distribution and speciation of metal ions at complex NOM/mineral interfaces. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据