4.5 Article

Cell-Type-Specific High Throughput Toxicity Testing in Human Midbrain Organoids

期刊

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnmol.2021.715054

关键词

organoids; midbrain; screening; high throughput; automation; toxicity testing

资金

  1. European Research Council (ERC) [669168]
  2. International Max Planck Research School-Molecular Biomedicine, Munster, Germany
  3. European Research Council (ERC) [669168] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Toxicity testing is essential in the development and approval of chemical compounds, and 3D human organoid systems show promise in providing more relevant models of human physiology. Recent advancements in standardized automated midbrain organoids have allowed for efficient evaluation of toxic effects, with high reproducibility. This study demonstrates the feasibility of quantitatively assessing cell-type-specific toxicity in human organoids in vitro, paving the way for more accurate toxicity predictions.
Toxicity testing is a crucial step in the development and approval of chemical compounds for human contact and consumption. However, existing model systems often fall short in their prediction of human toxicity in vivo because they may not sufficiently recapitulate human physiology. The complexity of three-dimensional (3D) human organ-like cell culture systems (organoids) can generate potentially more relevant models of human physiology and disease, including toxicity predictions. However, so far, the inherent biological heterogeneity and cumbersome generation and analysis of organoids has rendered efficient, unbiased, high throughput evaluation of toxic effects in these systems challenging. Recent advances in both standardization and quantitative fluorescent imaging enabled us to dissect the toxicities of compound exposure to separate cellular subpopulations within human organoids at the single-cell level in a framework that is compatible with high throughput approaches. Screening a library of 84 compounds in standardized human automated midbrain organoids (AMOs) generated from two independent cell lines correctly recognized known nigrostriatal toxicants. This approach further identified the flame retardant 3,3 ',5,5 '-tetrabromobisphenol A (TBBPA) as a selective toxicant for dopaminergic neurons in the context of human midbrain-like tissues for the first time. Results were verified with high reproducibility in more detailed dose-response experiments. Further, we demonstrate higher sensitivity in 3D AMOs than in 2D cultures to the known neurotoxic effects of the pesticide lindane. Overall, the automated nature of our workflow is freely scalable and demonstrates the feasibility of quantitatively assessing cell-type-specific toxicity in human organoids in vitro.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据