4.8 Review

Carbon-enabled microwave chemistry: From interaction mechanisms to nanomaterial manufacturing

期刊

NANO ENERGY
卷 85, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2021.106027

关键词

Carbon; Microwave chemistry; Interaction mechanism; Microwave absorption; Fast heating

资金

  1. National Natural Science Foundation of China [51872035]
  2. Fundamental Research Funds for the Central Universities [DUT19LAB20]
  3. National Key Research and Development Program of China [2016YFB0101201]

向作者/读者索取更多资源

This review explores the multiple interaction effects between external microwave fields and carbon materials, focusing on the thermocatalysis and conversion reactions, as well as the role of carbon additives in advanced material preparation.
The multiple interaction effects between external microwave fields and carbon materials trigger the thermocatalysis and conversion reactions by constructing the uniformly thermal room or localized heat microenvironment in confined space, providing an alternative and promising technology for functional materials engineering and manufacturing. This review summarizes the state-of-the-art microwave chemistry techniques involved in or enabled by the carbon additives, with a focus on the introduction of the underlying mechanism, influence factors/key parameters, and the technologies of advanced material preparation from nano to bulk scales. Specifically, it is reviewed in detail that the carbon materials are used as microwave heating media and hotspots/arc plasmas generators to drive and boost the thermochemical reactions. The carbon materials as precursors in microwave are also summarized, which can be helpful for producing the advanced materials with tailored properties and multi-functionalities that are not far realized by conventional techniques/methods. Moreover, the expectation for the future of carbon-participated microwave processes and some approaches to optimizing the corresponding reactions in terms of the technical and industrial levels are proposed, which will help to jump out of gap from lab to industrial application and finally inspire many more endeavors for the manufacturing of advanced/innovative nanomaterials in future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据