4.8 Article

Revisiting the degradation of solid/electrolyte interfaces of magnesium metal anodes: Decisive role of interfacial composition

期刊

NANO ENERGY
卷 86, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2021.106087

关键词

Magnesium metal anodes; Organic-rich SEI; Inorganic-rich SEI; Electronic insulation; Solid; electrolyte interface; Magnesium fluoride

资金

  1. National Natural Science Foundation of China [U1710256, U1810115, 21938005]

向作者/读者索取更多资源

The study revealed that the native SEI is dominated by organic components and designed a model system with controllable electronically insulating SEI by increasing the inorganic component, showing that the interfacial electronic property and composition is decisive to the degradation of Mg metal anodes. The initial organic-rich SEI hinders ion transport by undergoing continuous cracking/reformation and electronic leakage, leading to continuous proliferation during operation process.
A prevailing perception on Mg metal anodes is that high ion-diffusion barriers in corresponding passivated interfaces can induce poor reversibility and high overpotential. However, the dynamic evolution and degradation of native solid/electrolyte interfaces (SEI) in the electrochemical process has not yet been established. To unravel the origin of unstable Mg anodes, this study comprehensively reveals the native SEI is dominated by organic components. A model system with controllable electronically insulating SEI is designed by increasing the inorganic component, to provide a new insight that the interfacial electronic property and composition is decisive to the degradation of Mg metal anodes. The initial organic-rich SEI with insufficient electrical insulation in turn hinders ion transport by undergoing continuous cracking/reformation and electronic leakage which induces continuous proliferation during operation process. By optimizing electronic insulation of the initial interface, a symmetric cell exhibits superior cycling performances of over 1150 h with low polarization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据