4.8 Review

A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors

期刊

NANO ENERGY
卷 85, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2021.105955

关键词

Niobium oxides; Battery; Hybrid supercapacitors; Anode material; Nanoengineering strategy

资金

  1. National Natural Science Foundation of China [51774002, U1960107, 52072298, 51802261]
  2. 333 Talent Project of Hebei Province [A202005018]

向作者/读者索取更多资源

Niobium oxides and their composites have attracted great attention for applications in batteries and supercapacitors due to their unique properties, but they face challenges such as poor conductivity and limited active sites. Strategies such as morphology control and surface engineering are being used to improve their electrochemical performance.
Batteries and hybrid supercapacitors (SCs) are now playing a pivotal role in the development of electric vehicles, consumer electronics and large-scale power stations. Niobium-oxides-based materials and their composites have recently received a great attention for their applications in lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and pseudocapacitors because of their advantages, such as quasi-2D networks for fast ion insertion/ extraction, rich redox chemistry, and high chemical stability. However, several challenges, including poor inherent conductivities and limited/superficial electrochemical active sites, should be overcome before practical applications. In this paper, the recent advancement of the materials preparation, synthesis, characterization, and performance validation as well as fundamental understanding of the functional mechanisms are comprehensively reviewed. Several technical challenges and strategies are respectively analyzed and utilized to improve the materials' electrochemical performances, including morphology control, surface engineering, doping and construction of composite electrodes. Indeed, the charge storage mechanisms of the materials with different crystal structures are summarized and discussed. Several research directions toward the development, practical applications and commercialization of the related electrochemical energy devices are also proposed for enhancing the performance of niobium oxides and their composites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据