4.6 Review

Mechanical Strain-Enabled Reconstitution of Dynamic Environment in Organ-on-a-Chip Platforms: A Review

期刊

MICROMACHINES
卷 12, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/mi12070765

关键词

organ-on-a-chip; microfluidics; mechanical strain; actuators

向作者/读者索取更多资源

Organ-on-a-chip (OOC) technology replicates organ- or tissue-level functionality at a small scale using microfluidic 3D cell culture principle. It offers an alternative to animal models for drug development and environmental toxicology screening, by mimicking cell-cell interactions and mechanical stimuli that influence cell behavior. OOC prototypes leverage microfluidic technology to reproduce mechanically dynamic microenvironments on-chip for enhanced in vitro functional organ models.
Organ-on-a-chip (OOC) uses the microfluidic 3D cell culture principle to reproduce organ- or tissue-level functionality at a small scale instead of replicating the entire human organ. This provides an alternative to animal models for drug development and environmental toxicology screening. In addition to the biomimetic 3D microarchitecture and cell-cell interactions, it has been demonstrated that mechanical stimuli such as shear stress and mechanical strain significantly influence cell behavior and their response to pharmaceuticals. Microfluidics is capable of precisely manipulating the fluid of a microenvironment within a 3D cell culture platform. As a result, many OOC prototypes leverage microfluidic technology to reproduce the mechanically dynamic microenvironment on-chip and achieve enhanced in vitro functional organ models. Unlike shear stress that can be readily generated and precisely controlled using commercial pumping systems, dynamic systems for generating proper levels of mechanical strains are more complicated, and often require miniaturization and specialized designs. As such, this review proposes to summarize innovative microfluidic OOC platforms utilizing mechanical actuators that induce deflection of cultured cells/tissues for replicating the dynamic microenvironment of human organs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据