4.6 Article

Orthogonal Optimal Design of Multiple Parameters of a Magnetically Controlled Capsule Robot

期刊

MICROMACHINES
卷 12, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/mi12070802

关键词

capsule robot; orthogonal design; CFD (computational fluid dynamics); PIV (particle image velocimetry); operating performance indicators

资金

  1. National Natural Science Foundation of China [51875051]
  2. Natural Science Foundation of Hunan Province [2019JJ40324]
  3. Scientific Research Foundation of the Hunan Provincial Education Department [19A047, 20A043]

向作者/读者索取更多资源

Magnetically controlled capsule robots are used for diagnosing and treating the human gastrointestinal tract. This study established magnetic driving and fluid measurement systems for in-pipe capsule robots, and analyzed the influence of different parameters on the performance indicators of the robot.
Magnetically controlled capsule robots are predominantly used in the diagnosis and treatment of the human gastrointestinal tract. In this study, based on the permanent magnet method, magnetic driving and fluid measurement systems for in-pipe capsule robots were established. Using computational fluid dynamics (CFD) and particle image velocimetry (PIV), the fluid velocity and vorticity in the pipe of the capsule robot were calculated and measured. The running characteristics of the capsule robot were numerically analyzed in the curved pipe and the peristaltic flow. Furthermore, the range and variance method of orthogonal design was used to analyze the influence of four typical parameters (namely, pipe diameter, robotic translational speed, robotic rotational speed, and fluid viscosity) on the three operating performance indicators of the capsule robot (namely, the forward resistance of the robot, fluid turbulent intensity near the robot, and maximum fluid pressure to the pipe wall). In this paper, the relative magnitude and significance of the influence of each typical parameter on different performance indicators of the robot are presented. According to the different performance requirements of the robot, the different four parameter combinations are optimized. It is hoped that this work provides a reference for the selection of the appropriate mucus, translational speed, and rotational speed of the robot when it is working in pipes with different diameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据