4.8 Review

Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design

期刊

LIGHT-SCIENCE & APPLICATIONS
卷 10, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41377-021-00599-2

关键词

-

类别

资金

  1. National Natural Science Foundation of China [21727807, 21904112, 91950121, 21872115]

向作者/读者索取更多资源

Raman and infrared spectroscopy have low detection sensitivity, but advancements have been made through the development of optical systems, nanostructure-based techniques, and their coupling for maximizing detection sensitivity. Plasmonics, interactions with nano/microstructures, and coupling effects have been studied to increase surface sensitivity. The focus is on systematically designing macro-optical systems to maximize excitation efficiency and detection sensitivity, with advancements in scanning-probe microscopy-based nanoscale spectroscopy. Prospects include emerging techniques and methodologies for further developments in the field.
Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA. We describe various interactions of light with nano/microstructures, localized surface plasmon, surface plasmon polariton, and lightning-rod effect. Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle-nanoparticle and nanoparticle-substrate configuration. As the nano/microstructures have specific optical near-field and far-field behaviors, we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity. We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region. We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy. Finally, prospects and further developments of this field are given with emphasis on emerging techniques and methodologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据