4.8 Article

High-accuracy source-independent radiometric calibration with low complexity for infrared photonic sensors

期刊

LIGHT-SCIENCE & APPLICATIONS
卷 10, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41377-021-00597-4

关键词

-

类别

资金

  1. National Natural Science Foundation of China [41875037, 41275034]

向作者/读者索取更多资源

Radiometric calibration (RC) is essential for ensuring the accuracy of measurements from infrared photonic sensors. An original source-independent RC (SIRC) principle based on modeling has been proposed to improve calibration accuracy and reduce uncertainty costs, providing a traceable way for calibration. The SIRC has been implemented in Fengyun-2 satellites since 2019, ensuring long-term stable service for global observation systems.
Radiometric calibration (RC) is an essential solution to guarantee measurements from infrared photonic sensors with certain accuracy, the main task of which is to determine the radiometric responsivity of sensor and usually be solved by comparing with some radiation source (i.e., blackbody), called source-based RC (SBRC). In addition to the complexity in manufacture, the nonideal characteristics of an available source will inevitably introduce unexpected uncertainties to reduce the final calibration accuracy by around 0.2-0.5 K in SBRC. Therefore, we propose an original source-independent RC (SIRC) principle based on modeling instead of comparing for SBRC, where the incident background radiation to detector, as a dominated factor influencing the responsivity characteristics of a photonic sensor, is modeled to implement RC for both two fundamental types (photoconductive and photovoltaic) of HgCdTe photonic detectors. The SIRC merely requires the temperature information of main components of a sensor other than some complex source and its assembly, and provides a traceable way at lower uncertainty costs relative to the traditional SBRC. The SIRC is being implemented in Fengyun-2 satellites since 2019, which ensures a long-term stable service of Chinese geostationary meteorological satellites for the global observation system under the framework of World Meteorological Organization. Moreover, a 20-year-period traceable Fengyun-2 dataset to be recalibrated with SIRC will benefit the further climate applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据