4.4 Article

Evaluation of the Neuroanatomical Basis of Olfactory Dysfunction in the General Population

期刊

JAMA OTOLARYNGOLOGY-HEAD & NECK SURGERY
卷 147, 期 10, 页码 855-863

出版社

AMER MEDICAL ASSOC
DOI: 10.1001/jamaoto.2021.2026

关键词

-

向作者/读者索取更多资源

This study revealed that olfactory bulb volume was independently correlated with odor identification function and mediated the age-related association between volumes of central olfactory structures and olfactory function.
IMPORTANCE Olfactory dysfunction is a prodromal manifestation of many neurodegenerative disorders, including Alzheimer and Parkinson disease. However, its neuroanatomical basis is largely unknown. OBJECTIVE To assess the association between olfactory brain structures and olfactory function in adults 30 years or older and to examine the extent to which olfactory bulb volume (OBV) mediates the association between central olfactory structures and olfactory function. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study analyzed baseline data from the first 639 participants with brain magnetic resonance imaging (MRI) in the Rhineland Study, an ongoing population-based cohort study in Bonn, Germany. Participants were enrolled between March 7, 2016, and October 31, 2017, and underwent brain MRI and olfactory assessment. Data were analyzed from March 1, 2018, to June 30, 2021. EXPOSURE Volumetric measures were derived from 3-T MRI T1-weighted brain scans, and OBV was manually segmented on T2-weighted images. The mean volumetric brain measures from the right and left sides were calculated, adjusted by head size, and normalized to all participants. MAIN OUTCOMES AND MEASURES Performance on the 12-item smell identification test (SIT-12) was used as a proxy for olfactory function. RESULTS A total of 541 participants with complete data on MRI-derived measures and SIT-12 scores were included. This population had a mean (SD) age of 53.6 (13.1) years and comprised 306 women (56.6%). Increasing age (difference in SIT-12 score, -0.04; 95% CI, -0.05 to -0.03), male sex (-0.26; 95% CI, -0.54 to 0.02), and nasal congestion (-0.28; 95% CI, -0.66 to 0.09) were associated with worse olfactory function (SIT-12 scores). Conversely, larger OBV was associated with better olfactory function (difference in SIT-12 score, 0.46; 95% CI, 0.29-0.64). Larger volumes of amygdala (difference in OBV, 0.12; 95% CI, 0.01-0.24), hippocampus (0.16; 95% CI, 0.04-0.28), insular cortex (0.12; 95% CI, 0.01-0.24), and medial orbitofrontal cortex (0.10; 95% CI, 0.00-0.20) were associated with larger OBV. Larger volumes of amygdala (volume x age interaction effect, 0.17; 95% CI, 0.03-0.30), parahippocampal cortex (0.17; 95% CI, 0.03-0.31), and hippocampus (0.21; 95% CI, 0.08-0.35) were Yassociated with better olfactory function only in older age groups. The age-modified association between volumes of central olfactory structures and olfactory function was largely mediated through OBV. CONCLUSIONS AND RELEVANCE This cross-sectional study found that olfactory bulb volume was independently associated with odor identification function and was a robust mediator of the age-dependent association between volumes of central olfactory structures and olfactory function. Thus, neurodegeneration-associated olfactory dysfunction may primarily originate from the pathology of peripheral olfactory structures, suggesting that OBVmay serve as a preclinical marker for the identification of individuals who are at an increased risk of neurodegenerative diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据