4.7 Article

Bitter melon derived extracellular vesicles enhance the therapeutic effects and reduce the drug resistance of 5-fluorouracil on oral squamous cell carcinoma

期刊

JOURNAL OF NANOBIOTECHNOLOGY
卷 19, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12951-021-00995-1

关键词

Bitter melon; Extracellular vesicles; Oral squamous cell carcinoma; NLRP3; 5-Fluorouracil

资金

  1. National Natural Science Foundation of China [81803088, 81870762]
  2. Natural Science Foundation of Shanghai [20ZR1431500]
  3. Shanghai Sailing Program [19YF1427500]

向作者/读者索取更多资源

Bitter melon-derived extracellular vesicles (BMEVs) demonstrated significant therapeutic efficacy against oral squamous cell carcinoma (OSCC) and reduced drug resistance. The study provides evidence for the development of PDEVs-enhanced therapy for cancer treatment.
Background Plant-derived extracellular vesicles (PDEVs) have been exploited for cancer treatment with several benefits. Bitter melon is cultivated as a vegetable and folk medicine with anticancer and anti-inflammatory activities. 5-Fluorouracil (5-FU) is widely used for cancer treatment. However, 5-FU-mediated NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammation activation induced the resistance of oral squamous cell carcinoma (OSCC) cells to 5-FU. In this study, we explored the potential of bitter melon-derived extracellular vesicles (BMEVs) for enhancing the therapeutic efficacy and reduce the resistance of OSCC to 5-FU. Results Herein, we demonstrate that bitter melon derived extracellular vesicles (BMEVs), in addition to their antitumor activity against OSCC have intrinsic anti-inflammatory functions. BMEVs induced S phase cell cycle arrest and apoptosis. Apoptosis induction was dependent on reactive oxygen species (ROS) production and JUN protein upregulation, since pretreatment with N-acetyl cysteine or catechin hydrate could prevent apoptosis and JUN accumulation, respectively. Surprisingly, BMEVs significantly downregulated NLRP3 expression, although ROS plays a central role in NLRP3 activation. We further assessed the underlying molecular mechanism and proposed that the RNAs of BMEVs, at least in part, mediate anti-inflammatory bioactivity. In our previous studies, NLRP3 activation contributed to the resistance of OSCC cells to 5-FU. Our data clearly indicate that BMEVs could exert a remarkable synergistic therapeutic effect of 5-FU against OSCC both in vitro and in vivo. Most notably, NLRP3 downregulation reduced the resistance of OSCC to 5-FU. Conclusions Together, our findings demonstrate a novel approach to enhance the therapeutic efficacy and reduce the drug resistance of cancer cells to chemotherapeutic agents, which provides proof-of-concept evidence for the future development of PDEVs-enhanced therapy. Graphic Abstract

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据