4.6 Article

Highly efficient flexible perovskite solar cells with vacuum-assisted low-temperature annealed SnO2 electron transport layer

期刊

JOURNAL OF ENERGY CHEMISTRY
卷 67, 期 -, 页码 1-7

出版社

ELSEVIER
DOI: 10.1016/j.jechem.2021.09.021

关键词

Flexible perovskite solar cells; Vacuum-assisted; Electron transport layer; Trap-assisted recombination

资金

  1. National Natural Science Foundation of China [61774046]

向作者/读者索取更多资源

By utilizing a low-temperature vacuum-assisted annealing method with SnO2 ETL, this study achieved high efficiency and stability in flexible PSCs, making it a promising approach for large-scale commercialization.
The demand for lightweight, flexible, and high-performance portable power sources urgently requires high-efficiency and stable flexible solar cells. In the case of perovskite solar cells (PSCs), most of the common electron transport layer (ETL) needs to be annealed for improving the optoelectronic properties, while conventional flexible substrates could barely stand the high temperature. Herein, a vacuum-assisted annealing SnO2 ETL at low temperature (100 degrees C) is utilized in flexible PSCs and achieved high efficiency of 20.14%. Meanwhile, the open-circuit voltage (V-oc) increases from 1.07 V to 1.14 V. The flexible PSCs also show robust bending stability with 86.8% of the initial efficiency is retained after 1000 bending cycles at a bending radius of 5 mm. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurements show that the density of oxygen vacancies, the surface roughness of the SnO2 layer, and film hydrophobicity are significantly increased, respectively. These improvements could be due to the oxygen-deficient environment in a vacuum chamber, and the rapid evaporation of solvents. The proposed vacuum-assisted low-temperature annealing method not only improves the efficiency of flexible PSCs but is also compatible and promising in the large-scale commercialization of flexible PSCs. (C) 2021 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据