4.6 Review

Review on supercapacitors: Technologies and performance evaluation

期刊

JOURNAL OF ENERGY CHEMISTRY
卷 59, 期 -, 页码 276-291

出版社

ELSEVIER
DOI: 10.1016/j.jechem.2020.11.013

关键词

Electrochemical capacitors; Metrics; Evaluation; Cell design; Applications

资金

  1. China Scholarship Council (CSC)

向作者/读者索取更多资源

The development of electrochemical capacitors has attracted significant attention in recent years. Research focuses on advanced electrode materials and cell design to improve energy density. The study emphasizes testing advanced ECs and projecting their potential for developing high-performance EC cells.
The development of electrochemical capacitors (i.e. supercapacitors) have attracted a lot of attention in recent years because of the increasing demand for efficient, high-power energy storage. Electrochemical capacitors (ECs) are particularly attractive for transportation and renewable energy generation applications, taking advantage of their superior power capability and outstanding cycle life. Over the past decade, various advanced electrode materials and cell design are being studied to improve the energy density of ECs. Hybrid Li-ion capacitors and pseudo-capacitors that utilize fast surface redox reactions of metal oxide and doped polymers are the prime candidates being considered. This paper is concerned with the metrics being used to describe the performance of ECs and how the metrics are evaluated by testing devices and how the data from the testing are best interpreted. Emphasize is on relating testing of advanced ECs using materials more complex than activated carbons to testing electric double-layer capacitors (EDLCs) using carbon in both electrodes. A second focus of the paper is projecting the potential of the advanced materials and ionic liquid electrolytes for the development of complete EC cells having an energy density more than a factor of ten greater the energy density of the EDLC devices currently on the market. This potential was evaluated by calculating the performance (energy and power) of a series of ECs that utilize the advanced materials that have been studied by electrochemists over the past 10-15 years. The capacitance and resistance of the advanced ECs were calculated utilizing specific capacitance (F/g or F/cm(3)) and porosity data for the electrode materials and ionic conductivity of the electrolytes. It was concluded that hybrid ECs can be developed with energy densities of at least 50 Wh/kg, 70 Wh/L with efficient power greater than 3 kW/kg. Continued research on micro-porous carbons with specific capacitance of 200F/g and greater is needed.to achieve these EC performance goals. (C) 2020 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据