4.3 Article

System dynamics and control of EV incorporated deregulated power system using MBO-optimized cascaded ID-PD controller

出版社

WILEY-HINDAWI
DOI: 10.1002/2050-7038.13100

关键词

cascaded ID-PD controller; deregulated power system; electric vehicle; magnetotactic bacteria optimization; power system dynamics and control; sensitivity analysis

向作者/读者索取更多资源

A diverse hybrid deregulated power system is proposed to enhance efficiency and reduce reliance on fossil fuels. The study shows that including electric vehicles in the power sources helps improve the dynamic performance of the control system, using novel optimization techniques to enhance the performance of secondary controllers.
A two-area hybrid deregulated power system is proposed with a multi-source combination of generating units with reference to the modern power and energy scenario. The proposed system is incorporated with solar-thermal, conventional-thermal, wind, and electric vehicle (EV) and is provided with appropriate system nonlinearities for a realistic approach. In addition to renewables, the inclusion of EVs helps to reduce CO2 emissions and dependence on fossil fuels, resulting in a cleaner environment. Such a class system requires a robust controller. In this regard, the transient and steady-state dynamics with respect to various classical and cascaded secondary controllers have been evaluated. The response comparison among different secondary controllers reports the cascaded ID-PD controller as the optimal one. Magnetotactic bacteria optimization (MBO) technique is used for parallely optimizing the secondary controller gains. A new study is explored to inspect the impact of EVs in regulating the system stability for the proposed system. The analysis confirms the inclusion of EVs in both the control area for better system dynamics. Sensitivity analysis is done to reflect the robustness of MBO-optimized cascaded ID-PD controller gains. It shows that optimized gains do not need to be rearranged for variations in system parameters. A separate study is carried out for any alterations in DISCO participation matrix (DPM), which is inevitable in a practical deregulated power system. It is found that the optimal controller gains attained at nominal DPM are also resilient to changes in DPM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据