4.7 Article

The Highs and Lows of P Supply in Medical Cannabis: Effects on Cannabinoids, the Ionome, and Morpho-Physiology

期刊

FRONTIERS IN PLANT SCIENCE
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2021.657323

关键词

Cannabis; cannabinoids; development; efficiency; fertilization; nutrition; phosphorus; reproductive

资金

  1. Chief Scientist Fund of the Ministry of Agriculture in Israel [20-03-0018]

向作者/读者索取更多资源

This study demonstrates that phosphorous significantly impacts the biosynthesis of cannabinoids, ionome, and plant functional physiology in medical drug-type cannabis plants. Phosphorous concentrations below 15 mg L-1 were insufficient for optimal plant function, while 30-90 mg L-1 P was within the optimal range for plant development and function.
Environmental conditions, including the availability of mineral nutrients, affect secondary metabolism in plants. Therefore, growing conditions have significant pharmaceutical and economic importance for Cannabis sativa. Phosphorous is an essential macronutrient that affects central biosynthesis pathways. In this study, we evaluated the hypothesis that P uptake, distribution and availability in the plant affect the biosynthesis of cannabinoids. Two genotypes of medical drug-type cannabis plants were grown under five P concentrations of 5, 15, 30, 60, and 90 mg L-1 (ppm) in controlled environmental conditions. The results reveal several dose-dependent effects of P nutrition on the cannabinoid profile of both genotypes, as well as on the ionome and plant functional physiology, thus supporting the hypothesis: (i) P concentrations <= 15 mg L-1 were insufficient to support optimal plant function and reduced photosynthesis, transpiration, stomatal conductance and growth; (ii) 30-90 mg L-1 P was within the optimal range for plant development and function, and 30 mg L-1 P was sufficient for producing 80% of the maximum yield; (iii) Ionome: about 80% of the plant P accumulated in the unfertilized inflorescences; (iv) Cannabinoids: P supply higher than 5 mg L-1 reduced Delta(9)-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) concentrations in the inflorescences by up to 25%. Cannabinoid concentrations decreased linearly with increasing yield, consistent with a yield dilution effect, but the total cannabinoid content per plant increased with increasing P supply. These results reveal contrasting trends for effects of P supply on cannabinoid concentrations that were highest under < 30 mg L-1 P, vs. inflorescence biomass that was highest under 30-90 mg L-1 P. Thus, the P regime should be adjusted to reflect production goals. The results demonstrate the potential of mineral nutrition to regulate cannabinoid metabolism and optimize pharmacological quality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据