4.7 Article

Efficient Protoplast Regeneration Protocol and CRISPR/Cas9-Mediated Editing of Glucosinolate Transporter (GTR) Genes in Rapeseed (Brassica napus L.)

期刊

FRONTIERS IN PLANT SCIENCE
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2021.680859

关键词

Brassica napus; CRISPR; Cas9; gene editing; glucosinolate transporter; GTR gene; protoplast regeneration

资金

  1. SLU Grogrund -Centre for Breeding of Food Crops, Trees and Crops for the Future (TC4F)
  2. SLU strategic research environment
  3. FORMAS - The Swedish Research Council for sustainable development

向作者/读者索取更多资源

This study established a rapid and efficient protocol for the isolation, regeneration, and transfection of protoplasts of rapeseed, investigating different basal media, types and combinations of plant growth regulators, and protoplast culture duration. Optimized combinations in media led to up to 45% shoot regeneration, with a critical importance of culture duration on different media. The transfection protocol was also successfully optimized for high mutation frequency in rapeseed gene editing.
Difficulty in protoplast regeneration is a major obstacle to apply the CRISPR/Cas9 gene editing technique effectively in research and breeding of rapeseed (Brassica napus L.). The present study describes for the first time a rapid and efficient protocol for the isolation, regeneration and transfection of protoplasts of rapeseed cv. Kumily, and its application in gene editing. Protoplasts isolated from leaves of 3-4 weeks old were cultured in MI and MII liquid media for cell wall formation and cell division, followed by subculture on shoot induction medium and shoot regeneration medium for shoot production. Different basal media, types and combinations of plant growth regulators, and protoplast culture duration on each type of media were investigated in relation to protoplast regeneration. The results showed that relatively high concentrations of NAA (0.5 mg l(-1)) and 2,4-D (0.5 mg l(-1)) in the MI medium were essential for protoplasts to form cell walls and maintain cell divisions, and thereafter auxin should be reduced for callus formation and shoot induction. For shoot regeneration, relatively high concentrations of cytokinin were required, and among all the combinations tested, 2.2 mg l(-1) TDZ in combination with auxin 0.5 mg l(-1) NAA gave the best result with up to 45% shoot regeneration. Our results also showed the duration of protoplast culture on different media was critical, as longer culture durations would significantly reduce the shoot regeneration frequency. In addition, we have optimized the transfection protocol for rapeseed. Using this optimized protocol, we have successfully edited the BnGTR genes controlling glucosinolate transport in rapeseed with a high mutation frequency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据