4.7 Article

Can We Harness Enviromics to Accelerate Crop Improvement by Integrating Breeding and Agronomy?

期刊

FRONTIERS IN PLANT SCIENCE
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2021.735143

关键词

environmental characterisation; envirotyping; yield prediction; drought; crop modelling; crossover genotype by environment interactions; target population of environments; multi-environment trial

向作者/读者索取更多资源

The diverse consequences of genotype-by-environment interactions determine crop trait phenotypes, impacting crop productivity and plant breeding significantly. Advances in genomics and sensor technologies can accelerate the prediction of crop trait phenotypes, motivating the development of new prediction methods.
The diverse consequences of genotype-by-environment (GxE) interactions determine trait phenotypes across levels of biological organization for crops, challenging our ambition to predict trait phenotypes from genomic information alone. GxE interactions have many implications for optimizing both genetic gain through plant breeding and crop productivity through on-farm agronomic management. Advances in genomics technologies have provided many suitable predictors for the genotype dimension of GxE interactions. Emerging advances in high-throughput proximal and remote sensor technologies have stimulated the development of enviromics as a community of practice, which has the potential to provide suitable predictors for the environment dimension of GxE interactions. Recently, several bespoke examples have emerged demonstrating the nascent potential for enhancing the prediction of yield and other complex trait phenotypes of crop plants through including effects of GxE interactions within prediction models. These encouraging results motivate the development of new prediction methods to accelerate crop improvement. If we can automate methods to identify and harness suitable sets of coordinated genotypic and environmental predictors, this will open new opportunities to upscale and operationalize prediction of the consequences of GxE interactions. This would provide a foundation for accelerating crop improvement through integrating the contributions of both breeding and agronomy. Here we draw on our experience from improvement of maize productivity for the range of water-driven environments across the US corn-belt. We provide perspectives from the maize case study to prioritize promising opportunities to further develop and automate enviromics methodologies to accelerate crop improvement through integrated breeding and agronomic approaches for a wider range of crops and environmental targets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据