4.6 Article

Understanding the Fundamental Basis for Biofilm Formation on Plastic Surfaces: Role of Conditioning Films

期刊

FRONTIERS IN MICROBIOLOGY
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2021.687118

关键词

conditioning films; microbial attachment; plastic; biofilms formation; atomic force microscope

向作者/读者索取更多资源

The study found that marine conditioning of PET and PLA samples for 24 hours resulted in an increase of approximately 11% and 31% in average surface roughness, with coccoid-shaped bacterial cells attaching to the surfaces and accumulation of salt precipitates revealed through EDS analysis. The increase in surface roughness due to conditioning is linked to a material's hydrophilicity, leading to easier attachment of bacteria on the surfaces. Further research on CFs could provide important insights into the interaction between plastics and microbes with implications for medical, industrial, and environmental research.
Conditioning films (CFs) are surface coatings formed by the adsorption of biomolecules from the surrounding environment that can modify the material-specific surface properties and precedes the attachment of microorganisms. Hence, CFs are a biologically relevant identity that could govern the behavior and fate of microplastics in the aquatic environment. In the present study, polyethylene terephthalate (PET) and polylactic acid (PLA) plastic cards were immersed in natural seawater to allow the formation of CFs. The changes in the surface roughness after 24 h were investigated by atomic force microscopy (AFM), and the surface changes were visualized by scanning electron microscopy (SEM). The global elemental composition of the conditioned surface was investigated by energy dispersive spectroscopy (EDS). Results indicated that marine conditioning of PET and PLA samples for 24 h resulted in an increase of similar to 11 and 31% in the average surface roughness, respectively. SEM images revealed the attachment of coccoid-shaped bacterial cells on the conditioned surfaces, and the accumulation of salts of sodium and phosphate-containing precipitates was revealed through the EDS analysis. The results indicate that the increase in surface roughness due to conditioning is linked to a material's hydrophilicity leading to a rapid attachment of bacteria on the surfaces. Further investigations into the CFs can unfold crucial knowledge surrounding the plastic-microbe interaction that has implications for medical, industrial, and environmental research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据