4.7 Review

Could Changing the DNA Methylation Landscape Promote the Destruction of Epstein-Barr Virus-Associated Cancers?

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fcimb.2021.695093

关键词

Epstein-Barr virus; DNA methylation; CpG motif; decitabine; demethylation; epigenetics

向作者/读者索取更多资源

DNA methylation at CpG motifs plays a key role in gene regulation, with hypermethylation generally leading to decreased gene expression. In EBV infection, the viral genome becomes hypermethylated at CpG motifs, impacting viral gene expression. DNA methyl transferase enzymes are crucial in the process of DNA methylation and can be targeted for therapeutic interventions in EBV-associated cancer.
DNA methylation at CpG motifs provides an epigenetic route to regulate gene expression. In general, an inverse correlation between DNA hypermethylation at CpG motifs and gene expression is observed. Epstein Barr-virus (EBV) infects people and the EBV genome resides in the nucleus where either its replication cycle initiates or it enters a long-term latency state where the viral genome becomes hypermethylated at CpG motifs. Viral gene expression shows a largely inverse correlation with DNA hypermethylation. DNA methylation occurs through the action of DNA methyl transferase enzymes: writer DNA methyl transferases add methyl groups to specific regions of unmethylated DNA; maintenance DNA methyl transferases reproduce the pattern of DNA methylation during genome replication. The impact of DNA methylation is achieved through the association of various proteins specifically with methylated DNA and their influence on gene regulation. DNA methylation can be changed through altering DNA methyl transferase activity or through the action of enzymes that further modify methylated CpG motifs. Azacytidine prodrugs that are incorporated into CpG motifs during DNA replication are recognized by DNA methyl transferases and block their function resulting in hypomethylation of DNA. EBV-associated cancers have hypermethylated viral genomes and many carcinomas also have highly hypermethylated cellular genomes. Decitabine, a member of the azacytidine prodrug family, reactivates viral gene expression and promotes the recognition of lymphoma cells by virus-specific cytotoxic T-cells. For EBV-associated cancers, the impact of decitabine on the cellular genome and the prospect of combining decitabine with other therapeutic approaches is currently unknown but exciting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据