4.8 Article

Regulation of human mTOR complexes by DEPTOR

期刊

ELIFE
卷 10, 期 -, 页码 -

出版社

eLIFE SCIENCES PUBL LTD
DOI: 10.7554/eLife.70871

关键词

-

类别

资金

  1. Swiss National Science Foundation [179323, 177084, 141735, 182880]
  2. Horizon 2020 [812830]

向作者/读者索取更多资源

DEPTOR, a vertebrate-specific protein, acts as either an oncoprotein or tumor suppressor, playing crucial roles in metabolism, immunity, and cancer by interacting with mTOR through its structured regions. The interplay between DEPTOR and mTOR, involving multiple binding interfaces, provides insights into the diverse functions of DEPTOR in physiology and offers new avenues for targeting the mTOR-DEPTOR interaction in disease.
The vertebrate-specific DEP domain-containing mTOR interacting protein (DEPTOR), an oncoprotein or tumor suppressor, has important roles in metabolism, immunity, and cancer. It is the only protein that binds and regulates both complexes of mammalian target of rapamycin (mTOR), a central regulator of cell growth. Biochemical analysis and cryo-EM reconstructions of DEPTOR bound to human mTOR complex 1 (mTORC1) and mTORC2 reveal that both structured regions of DEPTOR, the PDZ domain and the DEP domain tandem (DEPt), are involved in mTOR interaction. The PDZ domain binds tightly with mildly activating effect, but then acts as an anchor for DEPt association that allosterically suppresses mTOR activation. The binding interfaces of the PDZ domain and DEPt also support further regulation by other signaling pathways. A separate, substrate-like mode of interaction for DEPTOR phosphorylation by mTOR complexes rationalizes inhibition of non-stimulated mTOR activity at higher DEPTOR concentrations. The multifaceted interplay between DEPTOR and mTOR provides a basis for understanding the divergent roles of DEPTOR in physiology and opens new routes for targeting the mTOR-DEPTOR interaction in disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据