4.8 Article

How subtle changes in 3D structure can create large changes in transcription

期刊

ELIFE
卷 10, 期 -, 页码 -

出版社

eLIFE SCIENCES PUBL LTD
DOI: 10.7554/eLife.64320

关键词

-

类别

资金

  1. National Institutes of Health [U01 DK127419, DGM132935A]
  2. Stanford University [GM008294]
  3. Burroughs Wellcome Fund CASI

向作者/读者索取更多资源

Animal genomes are organized into topologically associated domains (TADs), which contribute to gene regulation by facilitating enhancer-promoter (E-P) contacts within a TAD and preventing these contacts across TAD borders. Existing models fail to explain the hypersensitive response when disruptions occur at TAD boundaries. A futile cycle model of enhancer-mediated regulation is proposed to explain this hypersensitivity through bistability and hysteresis, showing that E-P biochemical specificity may be an illusion and emphasizing the importance of weak TAD boundaries.
Animal genomes are organized into topologically associated domains (TADs). TADs are thought to contribute to gene regulation by facilitating enhancer-promoter (E-P) contacts within a TAD and preventing these contacts across TAD borders. However, the absolute difference in contact frequency across TAD boundaries is usually less than 2-fold, even though disruptions of TAD borders can change gene expression by 10-fold. Existing models fail to explain this hypersensitive response. Here, we propose a futile cycle model of enhancer-mediated regulation that can exhibit hypersensitivity through bistability and hysteresis. Consistent with recent experiments, this regulation does not exhibit strong correlation between E-P contact and promoter activity, even though regulation occurs through contact. Through mathematical analysis and stochastic simulation, we show that this system can create an illusion of E-P biochemical specificity and explain the importance of weak TAD boundaries. It also offers a mechanism to reconcile apparently contradictory results from recent global TAD disruption with local TAD boundary deletion experiments. Together, these analyses advance our understanding of cis-regulatory contacts in controlling gene expression and suggest new experimental directions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据