4.8 Article

Purkinje cell outputs selectively inhibit a subset of unipolar brush cells in the input layer of the cerebellar cortex

期刊

ELIFE
卷 10, 期 -, 页码 -

出版社

ELIFE SCIENCES PUBLICATIONS LTD
DOI: 10.7554/eLife.68802

关键词

-

类别

资金

  1. National Institute of Neurological Disorders and Stroke [R35NS097284]

向作者/读者索取更多资源

In the cerebellar cortex, Purkinje cells selectively inhibit unipolar brush cells expressing mGluR1, thus regulating balance and eye movement. GABA receptor-mediated inhibition on unipolar brush cells can influence the input-output transformations of the cerebellar cortex in diverse ways.
Circuitry of the cerebellar cortex is regionally and functionally specialized. Unipolar brush cells (UBCs), and Purkinje cell (PC) synapses made by axon collaterals in the granular layer, are both enriched in areas that control balance and eye movement. Here, we find a link between these specializations in mice: PCs preferentially inhibit metabotropic glutamate receptor type 1 (mGluR1)-expressing UBCs that respond to mossy fiber (MF) inputs with long lasting increases in firing, but PCs do not inhibit mGluR1-lacking UBCs. PCs inhibit about 29% of mGluR1-expressing UBCs by activating GABA(A) receptors (GABA(A)Rs) and inhibit almost all mGluR1-expressing UBCs by activating GABA(B) receptors (GABA(B)Rs). PC to UBC synapses allow PC output to regulate the input layer of the cerebellar cortex in diverse ways. Based on optogenetic studies and a small number of paired recordings, GABA(A)R-mediated feedback is fast and unreliable. GABA(B)R-mediated inhibition is slower and is sufficiently large to strongly influence the input-output transformations of mGluR1-expressing UBCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据