4.8 Article

Fish primary embryonic pluripotent cells assemble into retinal tissue mirroring in vivo early eye development

期刊

ELIFE
卷 10, 期 -, 页码 -

出版社

ELIFE SCIENCES PUBLICATIONS LTD
DOI: 10.7554/eLife.66998

关键词

-

类别

向作者/读者索取更多资源

Organoids derived from rapidly developing teleosts show efficient assembly of anterior neural structures, particularly the retina, within just 4 days. The number of aggregated cells and genetic factors crucially impact morphological changes, reflecting the in vivo situation. High efficiency and rapid development of fish-derived organoids combined with advanced genome editing techniques allow for immediate research on development, disease, and the impact of physical environment on morphogenesis and differentiation.
Organoids derived from pluripotent stem cells promise the solution to current challenges in basic and biomedical research. Mammalian organoids are however limited by long developmental time, variable success, and lack of direct comparison to an in vivo reference. To overcome these limitations and address species-specific cellular organization, we derived organoids from rapidly developing teleosts. We demonstrate how primary embryonic pluripotent cells from medaka and zebrafish efficiently assemble into anterior neural structures, particularly retina. Within 4 days, blastula-stage cell aggregates reproducibly execute key steps of eye development: retinal specification, morphogenesis, and differentiation. The number of aggregated cells and genetic factors crucially impacted upon the concomitant morphological changes that were intriguingly reflecting the in vivo situation. High efficiency and rapid development of fish-derived organoids in combination with advanced genome editing techniques immediately allow addressing aspects of development and disease, and systematic probing of impact of the physical environment on morphogenesis and differentiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据