4.8 Article

Kinesin-6 Klp9 orchestrates spindle elongation by regulating microtubule sliding and growth

期刊

ELIFE
卷 10, 期 -, 页码 -

出版社

ELIFE SCIENCES PUBLICATIONS LTD
DOI: 10.7554/eLife.67489

关键词

-

类别

资金

  1. Ministere de l'enseignement superieur et de la recherche
  2. Fondation ARC pour la Recherche sur le Cancer
  3. Ligue Contre le Cancer
  4. INCA
  5. European Research Council [771599 ICEBERG]

向作者/读者索取更多资源

This study uncovered the regulatory mechanism of mitotic spindle microtubules, including the role of Klp9 in microtubule growth and sliding during spindle shortening, and its interaction with XMAP215/Dis1.
Mitotic spindle function depends on the precise regulation of microtubule dynamics and microtubule sliding. Throughout mitosis, both processes have to be orchestrated to establish and maintain spindle stability. We show that during anaphase B spindle elongation in Schizosaccharomyces pombe, the sliding motor Klp9 (kinesin-6) also promotes microtubule growth in vivo. In vitro, Klp9 can enhance and dampen microtubule growth, depending on the tubulin concentration. This indicates that the motor is able to promote and block tubulin subunit incorporation into the microtubule lattice in order to set a well-defined microtubule growth velocity. Moreover, Klp9 recruitment to spindle microtubules is dependent on its dephosphorylation mediated by XMAP215/Dis1, a microtubule polymerase, creating a link between the regulation of spindle length and spindle elongation velocity. Collectively, we unravel the mechanism of anaphase B, from Klp9 recruitment to the motors dual-function in regulating microtubule sliding and microtubule growth, allowing an inherent coordination of both processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据