4.2 Article

Identification and Prognostic Value Exploration of Radiotherapy Sensitivity-Associated Genes in Non-Small-Cell Lung Cancer

期刊

BIOMED RESEARCH INTERNATIONAL
卷 2021, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2021/5963868

关键词

-

向作者/读者索取更多资源

This study identified 365 genes potentially correlated with radiotherapy sensitivity in NSCLC patients through Weighted Gene Coexpression Network Analysis and LASSO algorithm. A prognostically predictive model based on 8 signature genes was constructed, which could effectively predict the survival prognosis of NSCLC patients. Additionally, immune infiltration analysis showed differences in immune cell proportions and immune checkpoint expression between low-risk and high-risk groups identified by the Risk Score model.
Background. Non-small-cell lung cancer (NSCLC) is a prevalent malignancy with high mortality and poor prognosis. The radiotherapy is one of the most common treatments of NSCLC, and the radiotherapy sensitivity of patients could affect the individual prognosis of NSCLC. However, the prognostic signatures related to radiotherapy response still remain limited. Here, we explored the radiosensitivity-associated genes and constructed the prognostically predictive model of NSCLC cases. Methods. The NSCLC samples with radiotherapy records were obtained from The Cancer Genome Atlas database, and the mRNA expression profiles of NSCLC patients from the GSE30219 and GSE31210 datasets were obtained from the Gene Expression Omnibus database. The Weighted Gene Coexpression Network Analysis (WGCNA), univariate, least absolute shrinkage and selection operator (LASSO), multivariate Cox regression analysis, and nomogram were conducted to identify and validate the radiotherapy sensitivity-related signature. Results. WGCNA revealed that 365 genes were significantly correlated with radiotherapy response. LASSO Cox regression analysis identified 8 genes, including FOLR3, SLC6A11, ALPP, IGFN1, KCNJ12, RPS4XP22, HIST1H2BH, and BLACAT1. The overall survival (OS) of the low-risk group was better than that of the high-risk group separated by the Risk Score based on these 8 genes for the NSCLC patients. Furthermore, the immune infiltration analysis showed that monocytes and activated memory CD4 T cells had different relative proportions in the low-risk group compared with the high-risk group. The Risk Score was correlated with immune checkpoints, including CTLA4, PDL1, LAG3, and TIGIT. Conclusion. We identified 365 genes potentially correlated with the radiotherapy response of NSCLC patients. The Risk Score model based on the identified 8 genes can predict the prognosis of NSCLC patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据