4.6 Article

Defect-Induced Self-Reduction and Anti-Thermal Quenching in NaZn(PO3)3:Mn2+ Red Phosphor

期刊

ADVANCED OPTICAL MATERIALS
卷 9, 期 19, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.202100870

关键词

anti-thermal quenching; luminescence; phosphates; phosphors; self-reduction

资金

  1. National Natural Science Foundation of China [11774187, U1902218, 51972118]
  2. National Key R& D Program of China [2018YFE0203400]
  3. Natural Science Foundation of Tianjin city [19JCYBJC17600]
  4. 111 Project [B07031]

向作者/读者索取更多资源

This study demonstrates the combination of self-reduction behavior of doped activators and zero-thermal-quenching luminescence in a Mn2+ activated red phosphor, and clarifies the self-reduction mechanism and anti-thermal quenching effect. The unique properties are attributed to cation vacancy defects and thermally induced energy transfer, suggesting potential for developing novel high thermal stability phosphors.
Self-reduction behavior of doped activators and zero-thermal-quenching luminescence have received much more attention in the exploration of luminescent materials for phosphor-converted white light-emitting diodes. Here, a combination of the two properties is demonstrated in a Mn2+ activated red phosphor, NaZn(PO3)(3):Mn2+, synthesized by a high temperature solid state reaction in ambient atmosphere, which is free from thermal quenching until 250 degrees C. By combined first-principles calculation and experimental investigation, the self-reduction mechanism from Mn4+ to Mn2+ and the anti-thermal quenching are clarified. The unique properties originate from the cation vacancy defects and the thermally induced energy transfer from the defect energy levels to the Mn2+ 3d excited state centers. This result will deepen the understanding of the effect of the crystal defect on luminescent materials, as well as inspiring more exploration on defect control to develop novel high thermal stability phosphors for practical application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据