4.1 Article

Investigation of ANN Model Containing One Hidden Layer for Predicting Compressive Strength of Concrete with Blast-Furnace Slag and Fly Ash

期刊

出版社

HINDAWI LTD
DOI: 10.1155/2021/5540853

关键词

-

向作者/读者索取更多资源

The study successfully predicted the compressive strength of concrete using artificial neuron network (ANN) and Monte Carlo simulations. The best-defined ANN structure was determined to be [8-24-1] with 24 neurons in the hidden layer. It was found that the age of sample and cement content are the two most crucial factors affecting the compressive strength of concrete using BFS and FA.
The prediction accuracy of concrete compressive strength is important and considered a challenging task, aiming at reducing costly and time-consuming experiments. Moreover, compressive strength prediction of concrete using blast-furnace slag (BFS) and fly ash (FA) is more difficult due to the complex mix design of a composition. In this investigation, an approach using the artificial neuron network (ANN), one of the most powerful machine learning algorithms, is applied to predict the compressive strength of concrete containing BFS and FA. The ANN models with one hidden layer containing 13 neuron number cases are proposed to determine the best ANN structure. Under the effect of random sampling strategies and the network structures selected, Monte Carlo simulations (MCS) are introduced to statistically investigate the convergence of results. Next, the evaluation of the model is concluded over 100 simulations for the convergence analysis. The results show that ANN is a highly efficient predictor of the compressive strength using BFS and FA, with maximum values of the coefficient of determination (R-2), root mean square error (RMSE), and mean absolute error (MAE) of 0.9437, 3.9474, and 2.9074, respectively, on the training part and 0.9285, 4.4266, and 3.2971, respectively, for the testing part. The best-defined structure of ANN is [8-24-1], with 24 neurons in the hidden layer. Partial Dependence Plots (PDP) are also performed to investigate the dependence of the prediction results of input variables used in the ANN model. The age of sample and cement content are found to be the two most crucial factors that affect the compressive strength of concrete using BFS and FA. The ANN algorithm is practical for engineers to reduce costly experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据