4.7 Article

Electrical Heating Performance of Graphene/PLA-Based Various Types of Auxetic Patterns and Its Composite Cotton Fabric Manufactured by CFDM 3D Printer

期刊

POLYMERS
卷 13, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/polym13122010

关键词

conveyor-fused deposition modeling 3D printer; graphene; PLA; auxetic pattern; unit cell; electrical heating performance

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIT) [NRF-2019R1A2C2084041]
  2. National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [NRF-2016M3A7B4910552]

向作者/读者索取更多资源

The evaluation of electrical heating performance by auxetic patterns, utilizing a graphene/PLA filament through CFDM 3D printing, revealed that TR < HN < CT < RE in terms of morphology, surface resistivity, and electrical heating distribution. HN and TR demonstrated the best electrical heating performance when applied to cotton fabric, showing stable electric heating properties.
To evaluate the electrical heating performance by auxetic pattern, re-entrant honeycomb (RE), chiral truss (CT), honeycomb (HN), and truss (TR), using graphene/PLA (Polylactic acid) filament, were manufactured by CFDM (conveyor fused deposition modelling) 3D printer. In addition, HN and TR, which was indicated to have an excellent electrical heating property, were selected to verify the feasibility of applying fabric heating elements. The result of morphology was that the number of struts constituting the unit cell and the connected points were TR < HN < CT < RE. It was also influenced by the surface resistivity and electrical heating performance. RE, which has the highest number of struts constituting the unit cell and the relative density, had the highest value of surface resistivity, and the lowest value was found in the opposite TR. In the electrical heating performance of samples, the heat distribution of RE was limited even when the applied voltage was increased. However, HN and TR were diffused throughout the sample. In addition, the surface temperature of RE, CT, HN, and TR was about 72.4 degrees C, 83.1 degrees C, 94.9 degrees C, and 85.9, respectively as applied at 30 V. When the HN and TR were printed on cotton fabric, the surface resistivity of HN/cotton and TR/cotton was about 10(3) omega/sq, which showed conductive material. The results of electrical heating properties indicated that the heat distribution of HN/cotton showed only in the region where power was supplied, but the TR/cotton was gradually expanded and presented stable electric heating properties. When 30 V was applied, the surface temperature of both samples showed more than 80 degrees C, and the shape was maintained stably due to the high thermal conductivity of the cotton fabric. Therefore, this study ensured that HN and TR show excellent electrical heating performance among four types of auxetic patterns with continuity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据