4.7 Article

Remediation of Punching Shear Failure Using Glass Fiber Reinforced Polymer (GFRP) Rods

期刊

POLYMERS
卷 13, 期 14, 页码 -

出版社

MDPI
DOI: 10.3390/polym13142369

关键词

flat slab; punching shear failure; GFRP rods; ductility; energy dissipation capacity

资金

  1. Department of Civil Engineering, King Mongkut's University of Technology Thonburi (KMUTT)

向作者/读者索取更多资源

The experimental program demonstrated the effectiveness of using GFRP rods for shear-strengthening of flat slabs, showing increased peak loads and deformation capacity while avoiding brittle failure. The RD pattern resulted in the highest peak load increase, while the SG pattern resulted in the lowest increase.
The results of an experimental program on shear-strengthening of flat slabs using Glass Fiber Reinforced Polymer (GFRP) rods are presented. A total of seven specimens were tested under an upward concentric monotonic loading until failure. One specimen served as a control and was tested without any modification. The remaining six specimens were strengthened with post-installed GFRP rods in single (SG), double (DB), and radial (RD) patterns within shear critical parameters around the centric column. The results of this experimental study suggest that GFRP rods are capable of enhancing both the peak load and deformation capacity. Furthermore, brittle failure associated with punching shear failure was successfully avoided by all strengthening patterns. Of all of the patterns, the RD pattern resulted in maximum peak load increase and corresponding deformation capacity while the lowest bound was created by the SG pattern. The results suggested that SG, DB and RD patterns enhanced ultimate loads up to 9.1, 11.3 and 15.7% while corresponding deflections increased up to 109, 136 and 154%. Strain measurement on flexural reinforcement suggested that all strengthened specimens were able to withstand higher longitudinal strains than yield. It was further shown that reducing the spacing between the GFRP rods efficiently enhanced peak loads, nevertheless, neither this change was proportional, nor did it result in an enhanced energy dissipation capacity. In the end, recommendations of American Concrete Institute (ACI) for the shear strength of two-way systems were modified to incorporate the contributions from GFRP rods. The results indicate that the proposed analytical approach provides an excellent match with the experimental results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据