4.6 Article

The kinetic landscape of nucleosome assembly: A coarse-grained molecular dynamics study

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 17, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1009253

关键词

-

资金

  1. JSPS KAKENHI [16H01303, 20K06587]
  2. RIKEN Pioneering Project Dynamical Structural Biology
  3. MEXT as Program for Promoting Researches on the Supercomputer Fugaku
  4. Grants-in-Aid for Scientific Research [16H01303, 20K06587] Funding Source: KAKEN

向作者/读者索取更多资源

Nucleosomes, consisting of DNA wrapped around histone proteins, are fundamental units of Eukaryotic chromosomes that compact the genome and regulate gene expression. Molecular dynamics simulations have provided insights into the kinetics, structure, and influencing factors of nucleosome assembly. The study found that histones and DNA can form various non-canonical nucleosome conformations during the complex assembly process, which remains unclear in detail.
Author summary Nucleosomes are biomolecular complexes formed by DNA wrapped around histone proteins. They represent the basic units of Eukaryotic chromosomes, compacting the genome so that it fits into the small nucleus, and regulating important biological processes such as gene expression. Nucleosomes are disassembled during disruptive events such as DNA replication, and re-assembled afterwards to preserve the correct organization of chromatin. However, the molecular details of nucleosome assembly are still not well understood. In particular, experiments found that histones and DNA may associate into a variety of non-canonical complexes, but their precise conformation and role during assembly remain unclear. In this study, we addressed these problems by performing extensive molecular dynamics simulations of nucleosomes undergoing assembly and disassembly. The simulations reveal many insights into the kinetics of assembly, the structure of non-canonical nucleosome intermediates, and the influence of salt concentration and DNA sequence on the assembly process. The organization of nucleosomes along the Eukaryotic genome is maintained over time despite disruptive events such as replication. During this complex process, histones and DNA can form a variety of non-canonical nucleosome conformations, but their precise molecular details and roles during nucleosome assembly remain unclear. In this study, employing coarse-grained molecular dynamics simulations and Markov state modeling, we characterized the complete kinetics of nucleosome assembly. On the nucleosome-positioning 601 DNA sequence, we observe a rich transition network among various canonical and non-canonical tetrasome, hexasome, and nucleosome conformations. A low salt environment makes nucleosomes stable, but the kinetic landscape becomes more rugged, so that the system is more likely to be trapped in off-pathway partially assembled intermediates. Finally, we find that the co-operativity between DNA bending and histone association enables positioning sequence motifs to direct the assembly process, with potential implications for the dynamic organization of nucleosomes on real genomic sequences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据