4.6 Article

Evaluation of residue-residue contact prediction methods: From retrospective to prospective

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 17, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1009027

关键词

-

资金

  1. National Key Research and Development Program of China [2018YFB0204403]
  2. Strategic Priority CAS Project [XDB38000000]
  3. National Science Foundation of China [61802384, U1813203]
  4. Shenzhen Basic Research Fund [JCYJ20200109114818703, JCYJ20180507182818013, JCYJ20170413093358429]
  5. CAS Key Lab [2011DP173015]
  6. Youth Innovation Promotion Association (CAS)
  7. Outstanding Youth Innovation Fund (CAS-SIAT)

向作者/读者索取更多资源

Sequence-based residue contact prediction is crucial for protein structure reconstruction. Different methods have different application scenarios, with multi-input DL methods showing the best overall performance. However, there is still room for improvement in current methods.
Sequence-based residue contact prediction plays a crucial role in protein structure reconstruction. In recent years, the combination of evolutionary coupling analysis (ECA) and deep learning (DL) techniques has made tremendous progress for residue contact prediction, thus a comprehensive assessment of current methods based on a large-scale benchmark data set is very needed. In this study, we evaluate 18 contact predictors on 610 non-redundant proteins and 32 CASP13 targets according to a wide range of perspectives. The results show that different methods have different application scenarios: (1) DL methods based on multi-categories of inputs and large training sets are the best choices for low-contact-density proteins such as the intrinsically disordered ones and proteins with shallow multi-sequence alignments (MSAs). (2) With at least 5L (L is sequence length) effective sequences in the MSA, all the methods show the best performance, and methods that rely only on MSA as input can reach comparable achievements as methods that adopt multi-source inputs. (3) For top L/5 and L/2 predictions, DL methods can predict more hydrophobic interactions while ECA methods predict more salt bridges and disulfide bonds. (4) ECA methods can detect more secondary structure interactions, while DL methods can accurately excavate more contact patterns and prune isolated false positives. In general, multi-input DL methods with large training sets dominate current approaches with the best overall performance. Despite the great success of current DL methods must be stated the fact that there is still much room left for further improvement: (1) With shallow MSAs, the performance will be greatly affected. (2) Current methods show lower precisions for inter-domain compared with intra-domain contact predictions, as well as very high imbalances in precisions for intra-domains. (3) Strong prediction similarities between DL methods indicating more feature types and diversified models need to be developed. (4) The runtime of most methods can be further optimized. Author summary The amino acid sequence of a protein ultimately determines its tertiary structure, and the tertiary structure determines its function(s) and plays a key role in understanding biological processes and disease pathogenesis. Protein tertiary structure can be determined using experimental techniques such as cryo-electron microscopy, nuclear magnetic resonance and X-ray crystallography, which are very expensive and time-consuming. As an alternative, researchers are trying to use in silico methods to predict the 3D structures. Residue contact-assisted protein folding paves an avenue for sequence-based protein structure prediction and therefore has become one of the most challenging and promising problems in structural bioinformatics. Over the past years, contact prediction has undergone continuous evolution in techniques. Through a retrospective analysis of traditional machine learning /evolutionary coupling analysis methods/ consensus machine learning methods and a multi-perspective study on recently developed deep learning methods, we explore the most advanced contact predictors, pursue application scenarios for different methods, and seek prospective directions for further improvement. We anticipate that our study will serve as a practical and useful guide for the development of future approaches to contact prediction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据