4.6 Article

FORCAsT-gs: Importance of Stomatal Conductance Parameterization to Estimated Ozone Deposition Velocity

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2021MS002581

关键词

ozone deposition; Stomatal conductance; gross primary productivity; model parameterization; ozone damage; forest ecosystems

资金

  1. Faculty of Science and Technology (FST)
  2. Lancaster Environment Centre (LEC) at Lancaster University
  3. Royal Society of London [DH150070]

向作者/读者索取更多资源

Stomata play a crucial role in regulating the exchange of trace gases between terrestrial vegetation and the atmosphere, impacting atmospheric composition and climate. Vegetation acts as a major sink for ground-level ozone, with the rate of dry deposition largely controlled by stomatal diffusion. The choice of stomatal conductance parameterization is critical for accurate quantification of ozone deposition rates.
The role of stomata in regulating photosynthesis and transpiration, and hence governing global biogeochemical cycles and climate, is well-known. Less well-understood, however, is the importance of stomatal control to the exchange of other trace gases between terrestrial vegetation and the atmosphere. Yet these gases determine atmospheric composition, and hence air quality and climate, on scales ranging from local to global, and seconds to decades. Vegetation is a major sink for ground-level ozone via the process of dry deposition and the primary source of many biogenic volatile organic compounds (BVOCs). The rate of dry deposition is largely controlled by the rate of diffusion of a gas through the stomata, and this also governs the emission rate of some key BVOCs. It is critical therefore that canopy-atmosphere exchange models capture the physiological processes controlling stomatal conductance and the transfer of trace gases other than carbon dioxide and water vapor. We incorporate three of the most widely used coupled stomatal conductance-photosynthesis models into the one-dimensional multi-layer FORest Canopy-Atmosphere Transfer (FORCAsT1.0) model to assess the importance of choice of parameterization on simulated ozone deposition rates. Modeled GPP and stomatal conductance across a broad range of ecosystems differ by up to a factor of two between the best and worst performing model configurations. This leads to divergences in seasonal and diel profiles of ozone deposition velocity of up to 30% and deposition rate of up to 13%, demonstrating that the choice of stomatal conductance parameterization is critical in accurate quantification of ozone deposition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据