4.4 Review

A review of CO2 adsorbents performance for different carbon capture technology processes conditions

期刊

GREENHOUSE GASES-SCIENCE AND TECHNOLOGY
卷 11, 期 5, 页码 1076-1117

出版社

WILEY PERIODICALS, INC
DOI: 10.1002/ghg.2112

关键词

adsorbent limitation; adsorption capacity; CO2 adsorbents; CO2 emission; future enhancement

向作者/读者索取更多资源

This review identifies adsorbents with the highest CO2 adsorption performance under various CO2 capture conditions to aid selection. It presents physical and chemical properties, synthesis methods, and advantages, showcasing NaX@NaA and MOF-177-TEPA as top performers. The paper also addresses limitations and future enhancements in pilot-scale carbon capture.
The utilization of various conventional and emerging solid adsorbents is an attractive carbon capture method for post-combustion and direct air capture (DAC). This review aims to identify adsorbents with the highest CO2 adsorption performance at various CO2 capture conditions inclusive of pre-combustion, post-combustion, and DAC to aid the selection of adsorbents. It presents the various adsorbents' physical and chemical properties, their synthesis methods, CO2 adsorption performance, and their advantages as CO2 adsorbents. Findings of the review show that NaX@NaA core-shell microspheres possess the highest CO2 adsorption capacity at 5.60 mmol g(-1) for adsorption at DAC conditions. MOF-177-TEPA exhibited the highest post-combustion condition CO2 adsorption capacity at 4.60 mmol g(-1) given tetraethylenepentamine properties leading to low diffusion resistance for CO2 and easy access to active sites. Approximation of these adsorbents' adsorption capacity within pre-combustion capture temperature at 1 bar for oxy-combustion process was 0.0000026-48.71 mmol g(-1). It is crucial to understand and evaluate these adsorbents' characteristics for application in the appropriate adsorption conditions. This considers their usage limitations on pilot-scale CO2 capture because of low productivity, poor durability, and stability for prolonged cyclic adsorption-desorption, expensive adsorption system, high gas flow rate, high adsorbate accommodation requirement, longer flow switching time, and low tolerance towards water and impurities present in flue gas. This paper hence presents future enhancements in overcoming their limitations to accommodate pilot scale carbon capture. These are beneficial in providing insights for capturing CO2 from flue gases emitted in industries. (c) 2021 Society of Chemical Industry and John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据