4.6 Article

Association Between Components of Cognitive Reserve and Serum BDNF in Healthy Older Adults

期刊

FRONTIERS IN AGING NEUROSCIENCE
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnagi.2021.725914

关键词

education; serum; polymorphism; cognitive reserve; brain derived neurotrophic factor; Alzheimer's disease; biomarkers

资金

  1. National Health and Medical Research Council (NHRMC) [1003645, 1108794]
  2. JO and JR Wicking Trust (Equity Trustees)
  3. National Health and Medical Research Council of Australia [1108794] Funding Source: NHMRC

向作者/读者索取更多资源

This study found that both early and mid-life education significantly influenced serum BDNF levels. Serum BDNF levels decreased with age, were lower in males compared to females, and the impact of the BDNF Val66Met genotype was small and non-significant.
Background: The brain-derived neurotrophic factor (BDNF) protein has been shown to have a prominent role in neuron survival, growth, and function in experimental models, and the BDNF Val66Met polymorphism which regulates its expression has been linked to resilience toward the effects of aging on cognition. Cognitively stimulating activity is linked to both increased levels of BDNF in the brain, and protection against age-related cognitive decline. The aim of this study was to investigate the associations between serum BDNF levels, the BDNF Val66Met genotype, and components of cognitive reserve in early and mid-life, measured with the Lifetime of Experiences Questionnaire (LEQ). Methods: Serum BDNF levels were measured cross-sectionally in 156 participants from the Tasmanian Healthy Brain Project (THBP) cohort, a study examining the potential benefits of older adults engaging in a university-level education intervention. Multiple linear regression was used to estimate serum BDNF's association with age, education, gender, BDNF Val66Met genotype, later-life university-level study, and cognitively stimulating activities measured by the LEQ. Results: Serum BDNF in older adults was associated with early life education and training, increasing 0.007 log(pg/ml) [95%CI 0.001, 0.012] per unit on the LEQ subscale. Conversely, education and training in mid-life were associated with a -0.007 log(pg/ml) [-0.012, -0.001] decrease per unit on the LEQ subscale. Serum BDNF decreased with age (-0.008 log(pg/ml) [-0.015, -0.001] per year), and male gender (-0.109 log(pg/ml) [-0.203, -0.015]), but mean differences between the BDNF Val66Met polymorphisms were not significant (p = 0.066). All effect sizes were small, with mid-life education and training having the largest effect size (eta(2)(p) = 0.044). Conclusion: Education in both early and mid-life explained small but significant amounts of variance in serum BDNF levels, more than age or gender. These effects were opposed and independent, suggesting that education at different stages of life may be associated with different cognitive and neural demands. Education at different stages of life may be important covariates when estimating associations between other exposures and serum BDNF.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据