4.5 Article

Population genetic structure and evolutionary history of Psammochloa villosa (Trin.) Bor (Poaceae) revealed by AFLP marker

期刊

ECOLOGY AND EVOLUTION
卷 11, 期 15, 页码 10258-10276

出版社

WILEY
DOI: 10.1002/ece3.7831

关键词

desert grasslands; ecological niche modeling; Inner Mongolian Plateau; population genetics; SAMOVA

资金

  1. National Natural Science Foundation of China [41761009, 31800310]
  2. Chinese Academy of Sciences [2019-1-4]
  3. Natural Science Foundation of Qinghai Provinc [2019-ZJ-7011]

向作者/读者索取更多资源

The study on the genetic diversity and structure of Psammochloa villosa populations in the Inner Mongolian Plateau revealed abundant genetic diversity, limited gene flow, and complex gene flow mechanisms occurring over long distances. The analysis also showed that genetic variation mainly exists within populations and that the distribution of P. villosa has continuously contracted since the last interglacial period, likely influenced by dry, cold climates during the Quaternary period.
Psammochloa villosa is an ecologically important desert grass that occurs in the Inner Mongolian Plateau where it is frequently the dominant species and is involved in sand stabilization and wind breaking. We sought to generate a preliminary demographic framework for P. villosa to support the future studies of this species, its conservation, and sustainable utilization. To accomplish this, we characterized the genetic diversity and structure of 210 individuals from 43 natural populations of P. villosa using amplified fragment length polymorphism (AFLP) markers. We obtained 1,728 well-defined amplified bands from eight pairs of primers, of which 1,654 bands (95.7%) were polymorphic. Results obtained from the AFLPs suggested effective alleles among populations of 1.32, a Nei's standard genetic distance value of 0.206, a Shannon index of 0.332, a coefficient of gene differentiation (G(ST)) of 0.469, and a gene flow parameter (Nm) of 0.576. All these values indicate that there is abundant genetic diversity in P. villosa, but limited gene flow. An analysis of molecular variance (AMOVA) showed that genetic variation mainly exists within populations (64.2%), and we found that the most genetically similar populations were often not geographically adjacent. Thus, this suggests that the mechanisms of gene flow are surprisingly complex in this species and may occur over long distances. In addition, we predicted the distribution dynamics of P. villosa based on the spatial distribution modeling and found that its range has contracted continuously since the last interglacial period. We speculate that dry, cold climates have been critical in determining the geographic distribution of P. villosa during the Quaternary period. Our study provides new insights into the population genetics and evolutionary history of P. villosa in the Inner Mongolian Plateau and provides a resource that can be used to design in situ conservation actions and prioritize sustainable utilization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据