4.8 Article

The Nrf2-Keap1 pathway is activated by steroid hormone signaling to govern neuronal remodeling

期刊

CELL REPORTS
卷 36, 期 5, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.celrep.2021.109466

关键词

-

资金

  1. Temasek Life Sciences Laboratory Singapore [TLL-2040]

向作者/读者索取更多资源

The Nrf2-Keap1 pathway plays a cell-autonomous role in governing neuronal remodeling during Drosophila metamorphosis, activated downstream of the steroid hormone ecdysone. It regulates dendrite pruning through proteasomal degradation, independent of its canonical antioxidant response pathway. This study reveals an epistatic link between the Nrf2-Keap1 pathway and steroid hormone signaling in neuronal remodeling.
The evolutionarily conserved Nrf2-Keap1 pathway is a key antioxidant response pathway that protects cells/organisms against detrimental effects of oxidative stress. Impaired Nrf2 function is associated with cancer and neurodegenerative diseases in humans. However, the function of the Nrf2-Keap1 pathway in the developing nervous systems has not been established. Here we demonstrate a cell-autonomous role of the Nrf2-Keap1 pathway, composed of CncC/Nrf2, Keap1, and MafS, in governing neuronal remodeling during Drosophila metamorphosis. Nrf2-Keap1 signaling is activated downstream of the steroid hormone ecdysone. Mechanistically, the Nrf2-Keap1 pathway is activated via cytoplasmic-to-nuclear translocation of CncC in an importin- and ecdysone-signaling-dependent manner. Moreover, Nrf2-Keap1 signaling regulates dendrite pruning independent of its canonical antioxidant response pathway, acting instead through proteasomal degradation. This study reveals an epistatic link between the Nrf2-Keap1 pathway and steroid hormone signaling and demonstrates an antioxidant-independent but proteasome-dependent role of the Nrf2Keap1 pathway in neuronal remodeling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据