4.7 Article

Efficient facemask decontamination via forced ozone convection

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-021-91735-w

关键词

-

资金

  1. NSF [CBET-1951942]
  2. American Heart Association [19IPLOI34760636]
  3. U.S. Department of Energy (DOE), Office of Science, Early Career Research Program [DESC0014169]
  4. UC Mexus Postdoctoral Fellowship
  5. Ming Hsieh Institute for Research on Engineering-Medicine for Cancer

向作者/读者索取更多资源

The COVID-19 crisis has caused a shortage of Facepiece Respirators (FPRs) for healthcare professionals, leading to environmental issues due to the generation of disposable waste. A plasma-based decontamination technique has been developed to circumvent the shortages of FPRs and alleviate the environmental impact of waste generation, using a flow-through configuration to efficiently sterilize masks without affecting their structure or filtration efficiency. This cost-effective approach can be easily implemented using readily available tools and provides rapid and effective decontamination.
The COVID-19 crisis has taken a significant toll on human life and the global economy since its start in early 2020. Healthcare professionals have been particularly vulnerable because of the unprecedented shortage of Facepiece Respirators (FPRs), which act as fundamental tools to protect the medical staff treating the coronavirus patients. In addition, many FPRs are designed to be disposable single-use devices, creating an issue related to the generation of large quantities of non-biodegradable waste. In this contribution, we describe a plasma-based decontamination technique designed to circumvent the shortages of FPRs and alleviate the environmental problems posed by waste generation. The system utilizes a Dielectric Barrier Discharge (DBD) to generate ozone and feed it through the fibers of the FPRs. The flow-through configuration is different than canonical ozone-based sterilization methods, in which the equipment is placed in a sealed ozone-containing enclosure without any flow through the mask polymer fibers. We demonstrate the rapid decontamination of surgical masks using Escherichia coli (E. coli) and Vesicular Stomatitis Virus (VSV) as model pathogens, with the flow-through configuration providing a drastic reduction in sterilization time compared to the canonical approach. We also demonstrate that there is no deterioration in mask structure or filtration efficiency resulting from sterilization. Finally, we show that this decontamination approach can be implemented using readily available tools, such as a plastic box, a glass tube, few 3D printed components, and the high-voltage power supply from a plasma globe toy. The prototype assembled for this study is portable and affordable, with effectiveness comparable to that of larger and more expensive equipment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据